BZA Packet

November 21, 2022

Hello All,

Enclosed please find your packet for the meeting of November 21, 2022.

We have:

- 1 extension request
- 1 carryover
- 1 new case

If you receive any citizen inquiries regarding these cases the proposed plans may be viewed by going to:

www.mtnbrook.org

- Calendar (upper right corner)
- Board of Zoning Adjustment (November 21, 2022)

- Meeting Information (for agenda) and Supporting Documents (to view proposed plans and/or survey select link associated with the case number)

If you have any questions about the cases please don't hesitate to give me a call at 802-3811 or send me an email at slatent@mtnbrook.org ...

Looking forward to seeing you on Monday!

Tyler

MEETING AGENDA CITY OF MOUNTAIN BROOK BOARD OF ZONING ADJUSTMENT November 21, 2022 PRE-MEETING: 4:40 P.M. REGULAR MEETING: 5:00 P.M.

MEETING TO BE HELD IN PERSON AT CITY HALL AND VIRTUALLY USING ZOOM VIDEO CONFERENCING (ACCESS INSTRUCTIONS ON MEETING WEBPAGE)

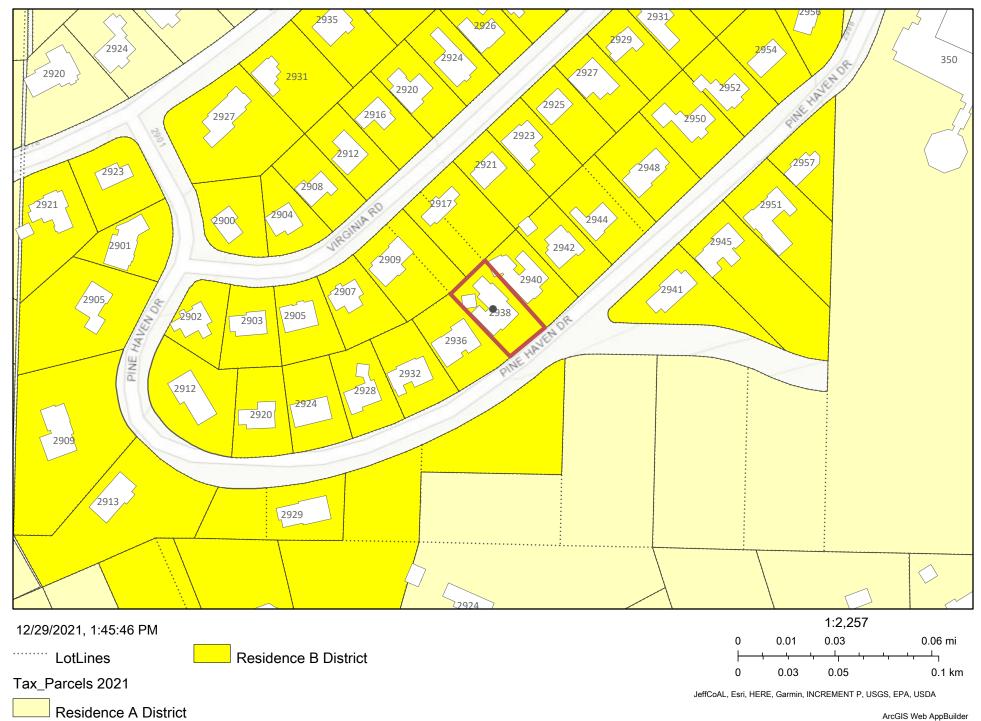
<u>NOTICE</u>

Any variance which is granted today expires and becomes null and void one year from today unless construction is begun in less than one year from today on the project for which the variance is granted. If construction will not be started within one year from today, the applicant may come back in 11 months and ask for a six-month extension, which the Board normally grants.

Any variance which is granted, regardless of the generality of the language of the motion granting the variance, must be construed in connection with, and limited by, the request of the applicant, including all diagrams, plats, pictures and surveys submitted to this Board before and during the public hearing on the variance application.

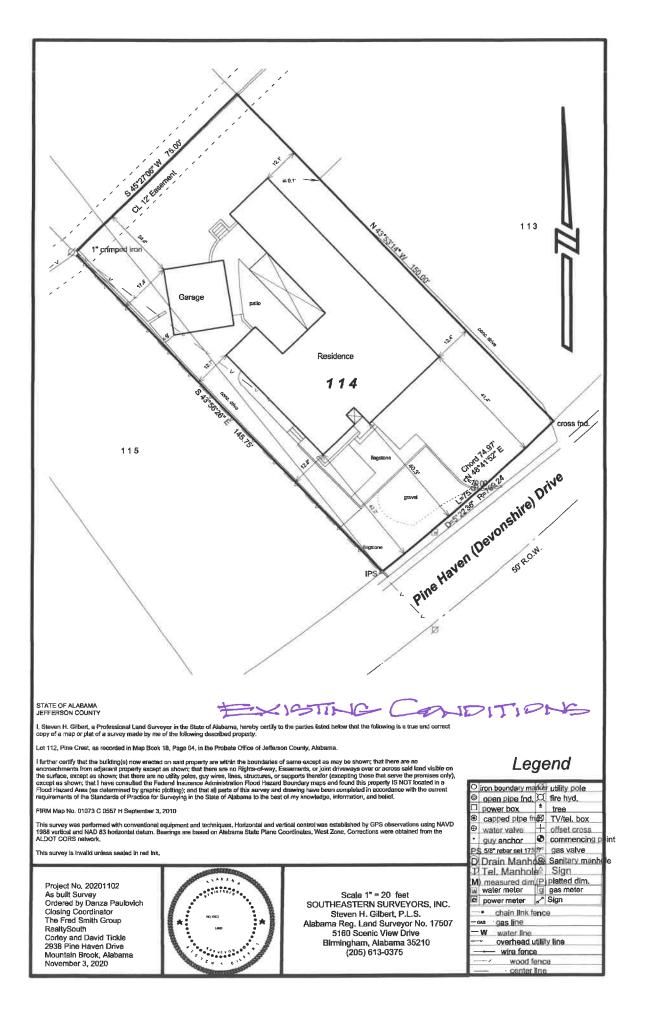
- 1. Approval of Minutes: October 17, 2022
- 2. Case A-22-02: David and Corley Tickle property owners, request a variance from the terms of the Zoning Regulations to allow an addition to the dwelling to be 34 feet from the front property line (Pine Haven Drive) in lieu of the required 35 feet. 2938 Pine Haven Drive (*Extension request; original approval on January 18, 2022.*)
- Case A-22-29: Andrew and Tiffany Linn, property owners, request variances from the terms of the Zoning Regulations to allow a retaining wall to be up to 10 feet in height in the front yard (Michael Lane) in lieu of the maximum allowed wall height of 4 feet.
 401 Michael Lane (*Carry-over from the October 17, 2022 meeting.*)
- 4. Case A-22-30: William and Judy Nelson, property owners, requests a variance from the terms of the Zoning Regulations to allow request a variance from the terms of the Zoning Regulations to allow a detached accessory structure (pavilion) in the secondary front yard (Overton Road) in lieu of the requirement that accessory structures be located only in a side yard or rear yard. 2704 Woodridge Road
- 5. Next Meeting: December 19, 2022
- 6. Adjournment

Variance Application - Part I

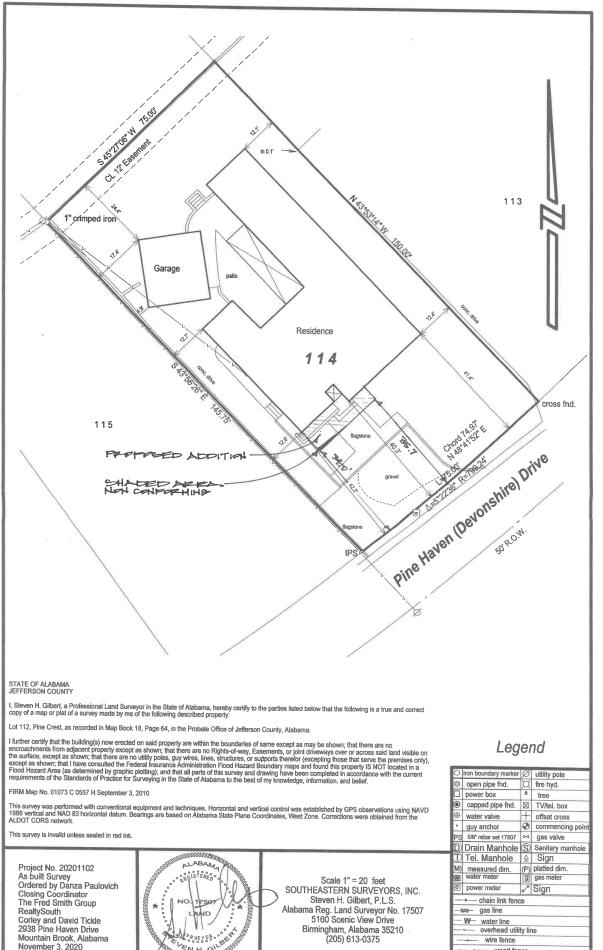

Property owner or representative agent must be present at hearing

 \boxtimes

Please fill in only applicable project information (relating directly to the variance request(s):


	Zoning Code Requirement	Existing Development	Proposed Development
Lot Area (sf)	Requirement	Development	2 Cronopinicati
Lot Width (ft)			
Front Setback (ft) primary	35.01		34.0'
Front Setback (ft) secondary			
Right Side Setback			
Left Side Setback			
Right Side Setback (ft):			
For non-conforming narrow			
lots in Res-B or Res-C;			
Less than 22' high \rightarrow			
22' high or greater \rightarrow			
Left Side Setback (ft):			
For non-conforming narrow			
lots in Res-B or Res-C:			
Less than 22' high \rightarrow			
22' high or greater \rightarrow			
Rear Setback (ft)			
Lot Coverage (%)			
Building Height (ft)			
Other			-
Other			-

A-22-02 Zoning



A-22-02 Aerial

A-22-02

0	iron boundary marker	Ø	utility pole
0	open pipe fnd.	Ø	fire hyd.
	power box	£	tree
۲	capped pipe fnd.		TV/tel. box
⊕	water valve	+	offset cross
۰	guy anchor	0	commencing point
PS	5/8" rebar set 17507		gas valve
D	Drain Manhole	S	Sanitary manhole
D	Tel. Manhole	순	Sign
M)		(P)	platted dim.
W	water meter	g	gas meter
e	power meter	8	Sign
chain link fence			
- GAS gas line			
wire fence			
wood fence			
center line			

December 17, 2021

Board for Zoning Adjustment City of Mountain Brook 56 Church Street Mountain Brook, Alabama 35213

RE: 2938 Pine Haven Drive

Dear Board Members,

On behalf of Mr. and Mrs. David Tickle I submit a request for variance for the property at 2938 Pine Haven Drive. The Owners request relief from the front setback requirement of 35.0' to 34.0' in order to add a small addition to the front of the house.

As shown on the attached survey, the non conforming area will be a small sliver of approximately five square feet due to the curvature of the property line. Most of the addition is conforming, as the right portion of the house sits over five feet behind the front setback line.

Thank you for your consideration,

Very Truly Yours,

Carey F. Hollingsworth, III, AIA

Variance Application Part II

Required Findings (Sec. 129-455 of the Zoning Ordinance)

To aid staff in determining that the required hardship findings can be made in this particular case, please answer the following questions with regard to your request. These findings must be made by the Board of Zoning Adjustment in order for a variance to be granted (please attach a separate sheet if necessary).

What special circumstances or conditions, applying to the building or land in question, are peculiar to such building or land, and do not apply generally to other buildings or land in the vicinity (including size, shape, topography, location or surroundings)?

THE CHRYATUPE OF THE FEONT PROPERTY LINE FELATIVE TO THE POSITION OF THE EXISTING HOUSE IS A UNICHE CIRCUMMENTALE RELATIVE TO THIS PARCEL

Was the condition from which relief is sought a result of action by the applicant? (i.e., *self-imposed hardship* such as: "...converted existing garage to living space and am now seeking a variance to construct a new garage in a required setback...")

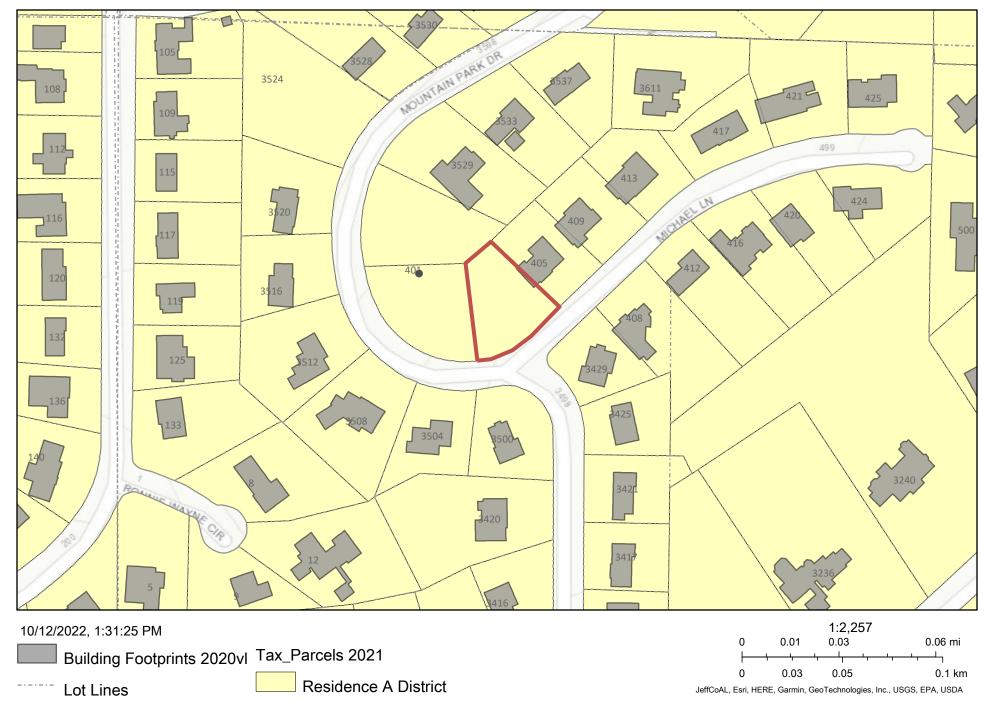
No

How would the granting of this variance be consistent with the purpose and intent of the Zoning Regulations?

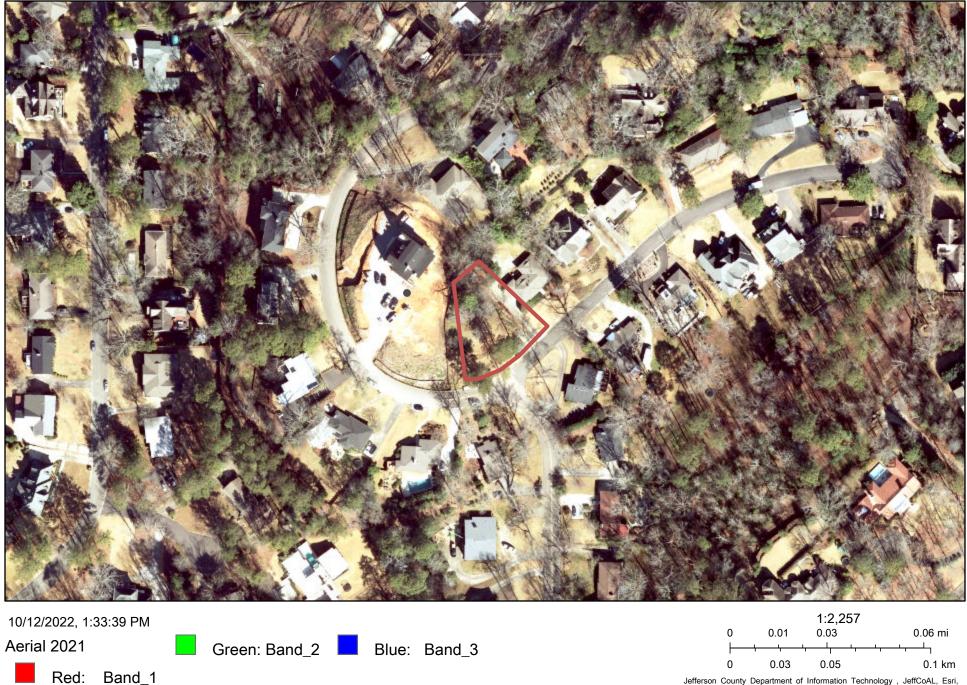
THE REQUESTED YAR LANCE IS EXTREMELY SHALL AND WOLLD HAT SET A PRECEDENT FOR FLITUPE REQUESTS IF ARANTED

Variance Application - Part I

Project Data


Address of Subject Property 40 MICHAEL LANE			
Zoning Classification <u>RESIDENTIAL</u>			
Name of Property Owner(s) ANDREW AND TIFFANY LINN			
Phone Number 205-837-8306 Email ALINA southlandtransportation group.	om		
Name of Surveyor JACKINS BUTLER ADAMS INC.			
Phone Number 205-870 - 3390 Email bbsurv e bellsouth.net			
Name of Architect (if applicable) SMELCER DESFGN			
Phone Number 205-229-3835 Email DJSMELCER @ VAHOD.COM			

Property owner or representative agent must be present at hearing


Please fill in only applicable project information (relating directly to the variance request(s):

	Zoning Code	Existing	Proposed
	Requirement	Development	Development
Lot Area (sf)			
Lot Width (ft)			
Front Setback (ft) primary	HO FT		
Front Setback (ft) secondary			
Right Side Setback			
Left Side Setback			
Right Side Setback (ft):			
For non-conforming narrow			
lots in Res-B or Res-C:			
Less than 22' high \rightarrow			
22' high or greater \rightarrow			
Left Side Setback (ft):			
For non-conforming narrow			
lots in Res-B or Res-C:			
Less than 22' high \rightarrow			
22' high or greater \rightarrow			
Rear Setback (ft)			
Lot Coverage (%)			
Building Height (ft)			
Other			
Other			

A-22-29 Zoning

A-22-29 Aerial

Jefferson County Department of Information Technology , JeffCoAL, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, EPA, USDA

ArcGIS Web AppBuilder JeffCoAL, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, EPA, USDA | Jefferson County Information Technology Services | Hunter Simmons | Jefferson County Department of Information Technology |

Report to the Board of Zoning Adjustment

A-22-29

Petition Summary

Request to allow a retaining wall to be up to 10 feet in height in the front yard (Michael Lane) in lieu of the maximum allowed wall height of 4 feet.

Background

During an erosion control maintenance inspection of this construction site in August 2022, the wall in question was first noted by the city's Inspections Department. This wall was not a part of the permit submittal for construction, and to date no plan has been submitted to the city's Building Official related to the wall. The city has no documentation or engineered drawings for this structure.

Scope of Work

The scope of work for this site entails a proposed new single family dwelling with a front retaining wall.

Variance Request for Retaining Wall Height in Front Yard

Nexus: The applicant stated that the slope of the lot made the retaining wall necessary to facilitate the front drive access and to create a usable functional front yards. While it appears true that there is a grade change from the back to the front of the property, it seems as though the desire to create a functional front yard is driving the request for the variance more so than the need for driveway access.

It is anticipated that an approval of such variance:

a. <u>Could be detrimental to the streetscape</u> (due to the massing and height)

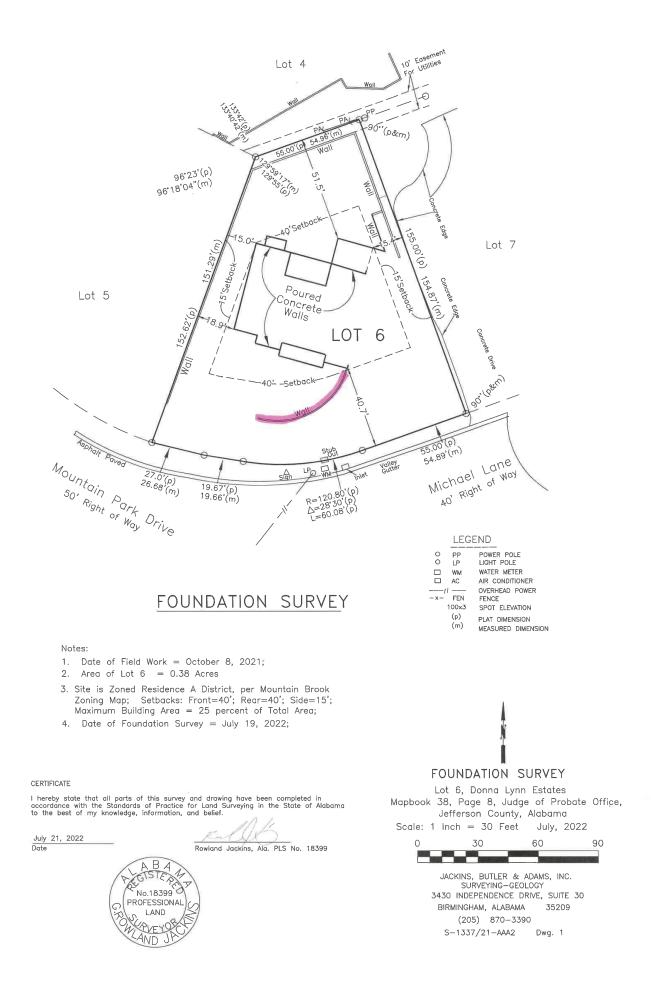
Impervious Area

The proposal is in compliance with the allowable impervious surface area.

Subject Property and Surrounding Land Uses

The property contains a single-family dwelling, and is surrounded by same.

Affected Regulation


The proposal is in compliance with the allowable impervious surface area.

Appends LOCATION: 401 Michael Lane

ZONING DISTRICT: Residence A District

OWNERS: Andrew and Tiffany Linn

Google Maps 401 Michael Ln

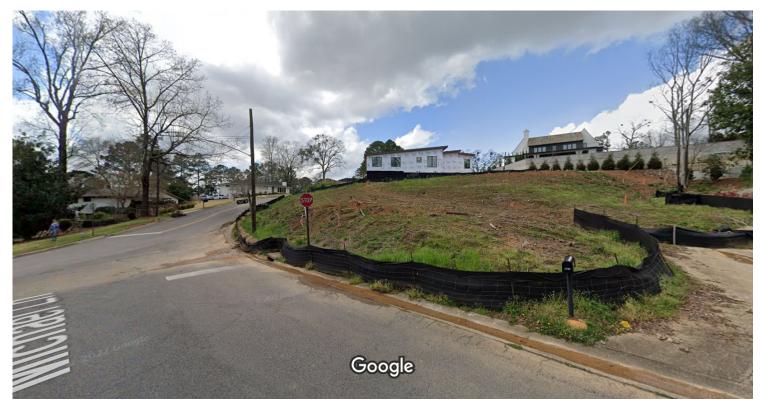


Image capture: Mar 2022 © 2022 Google

Mountain Brook, Alabama

Google

Street View - Mar 2022

Thursday, September 22, 2022

Dear Board of Zoning Adjustment,

Due to the hardships imposed by the shape and topographic nature of our lot, we are requesting your approval of a retaining wall that exceeds the height restriction of 4ft. Said retaining wall is necessary to ensure access to our front door from our driveway, to accommodate handicap accessibility and also to create a useable and functional front yard. We appreciate your consideration.

Sincerely, Andrew and Tiffany Linn *Homeowners* 401 Michael Lane Mountain Brook, AL 35213

Variance Application Part II

Required Findings (Sec. 129-455 of the Zoning Ordinance)

To aid staff in determining that the required hardship findings can be made in this particular case, please answer the following questions with regard to your request. These findings must be made by the Board of Zoning Adjustment in order for a variance to be granted (please attach a separate sheet if necessary).

What special circumstances or conditions, applying to the building or land in question, are peculiar to such building or land, and do not apply generally to other buildings or land in the vicinity (including size, shape, topography. location or surroundings)?

DUE TO THE SEVERE SLOPE OF THE LOT A RETAINING WALL TALLER THAN 4 FEET IS REQUIRED TO FASCILITATE THE FRONT DRIVE WAY ACCESS TO THE FRONT PAREING PAD AND TO CREATE A USABLE AND FUNCTIONABLE FRONT YARD.

Was the condition from which relief is sought a result of action by the applicant? (i.e., *self-imposed hardship* such as: "...converted existing garage to living space and am now seeking a variance to construct a new garage in a required setback...")

NO.

How would the granting of this variance be consistent with the purpose and intent of the Zoning Regulations?

IT WOULD ALLOW A RETAINING WALL TO BE BUILT FOR A DRIVE WAY AND USABLE FRONT YARD. October 13, 2022

City of Mountain Brook Dana Hazen Director of Planning, Building and Sustainability 56 Church Street Mountain Brook, AL 35213

Dear Ms. Hazen,

I am writing regarding the notice for the following appeal: Case A-22-29: Andrew and Tiffany Linn, property owners, request variances from the terms of the Zoning Regulations to allow a retaining wall to be up to 10 feet in height in the front yard (Michael Lane) in lieu of the maximum allowed wall height of 4 feet. 401 Michael Lane.

I will be in Denver on business at the time of the hearing, therefore I am writing to you so that my letter can be submitted for discussion in my absence.

My home is directly across the street from this residence. As you are aware, the land on which the residence sits was split into three separate parcels. There are now three *very large* homes sitting where one moderately sized home used to be. Overbuilding on this land has created much water runoff.

My main concern is that a retaining wall that diverts more water off the Linn's property will continue to affect our house (and our neighbors downstream, whose garages take on water during rainfall). The water coming from the Linn's property has caused significant damage to our home, as erosion is shifting it. This is evident in our daughter's newly renovated bathroom via cracking grout as well as our sidewalk sinking 6 inches and shifting since construction began.

The infrastructure simply cannot handle all the water and debris runoff now that the sites were cleared and built upon. This may need to be addressed with the city, as updated drainage has not occurred since the land has been altered.

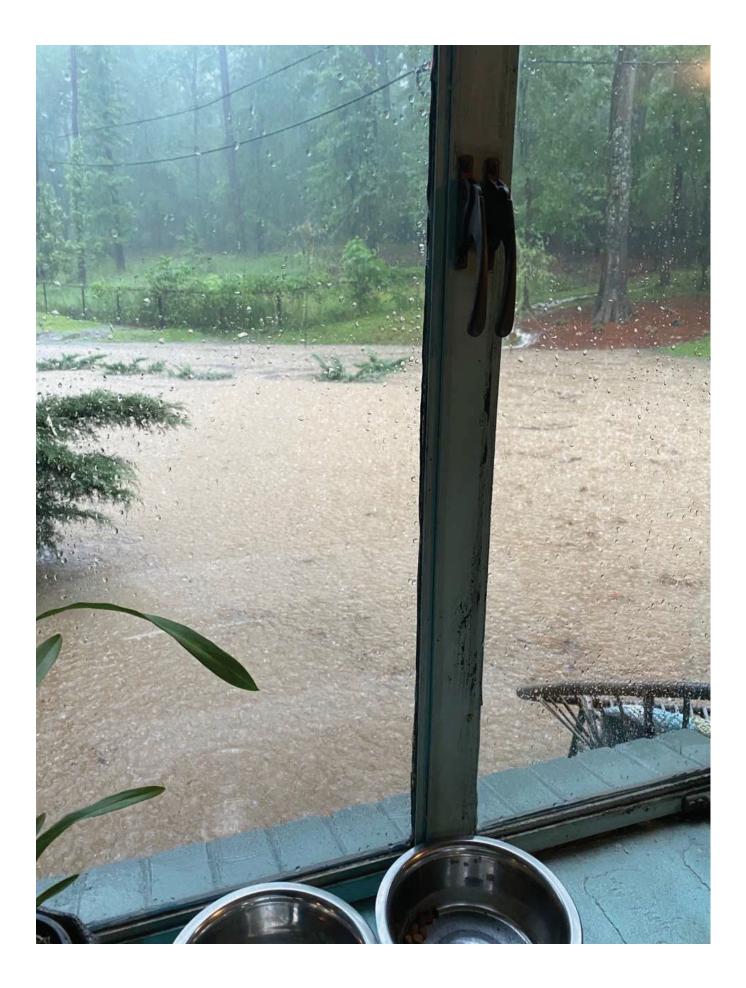
Based on our observation, the retaining wall (*WHICH ALREADY EXISTS*) could be brough into height conformity by cutting it down to 2 ft off grade and adding steps to the front door for the difference of height. Steps to a front door are a common solution for grade issues. If cutting the wall and adding steps cannot be achieved the wall should be removed and another option considered, as the base of the wall stands 15 ft-20 ft off street level to 30 ft at the top, creating a very uninviting façade. This creates a fortress effect, which is not fitting for the neighborhood. It's simply a horrible sight from street view.

I have included pictures for your review.

Respectfully,

Nicole Boomhover 3500 Mountain Park Drive

CC: Sam Gaston Glenn Merchant



SCOPE OF WORK

Proposal for Professional Services Related to 401 MICHAEL LANE DRAINAGE PLAN SLATE BARGANIER BUILDING

November 29, 2021

Project Objectives:

Slate Barganier Building (Client) office is located at 3121 Blue lake Drive, Vestavia, AL 35243 and requiring a drainage evaluation and remediation of lot 401 Michael Lane. Client wishes to engage InSite Engineering, LLC ("InSite") to evaluate pre-development and post-development flows and provide remediation solutions. A preliminary site visit by InSite revealed an increase in impervious area is causing an increase of storm water runoff and will have to be addressed to be in compliance with the City of Mountain Brook Drainage Ordinance.

At this time, InSite believes that it is possible to remedy the problem by conducting an evaluation of postdevelopment flows and compare them to the pre-development flows. With this information a detention facility can be designed to accommodate this increase in flow from the site and hold to achieve a peak discharge amount that is equal to or less than the pre-development condition.

Work: Work Engagement

Under the terms of this agreement, InSite will execute the following Scope of Work:

- 1. Evaluate the size and placement of all storm-related appurtenances to the home;
- 2. Determine expected stormwater flows during rain events;
- 3. Design appropriate drainage remedies for the control of post development runoff and satisfy the drainage ordinance of the City of Mountain Brook; and
- 4. Propose remedies in a set of engineering drawings suitable for permit approval and construction.

Under the terms of this agreement, the Client agrees to provide InSite Engineering LLC with all necessary information related to the Scope of Work. The following Key Assumptions will govern each engagement unless otherwise agreed between the Client and InSite Engineering LLC

Key Assumptions:

- 1. Unless specifically requested, InSite Engineering LLC will not be responsible for any geotechnical investigations, or evaluation of structural integrity of any existing building, building appurtenance, or physical structure already in place.
- 2. The Client may request additional services within the overall scope of services offered by InSite Engineering LLC, and such services will be provided with prior authorization under the terms and conditions stated herein.
- 3. Nothing in this contract shall exclude the Client from seeking services from other firms or individuals.
- 4. Final work product shall be agreed by the Client and InSite Engineering LLC and billed upon completion.

Key Staff Hours:

Deliverable:

Sr. Professional Engineer – 10 hrs Project Engineer – 10 hrs Within one week of engagement. Drainage evaluation calculations and details of detention facility.

Project Engineering Fee

Expected Completion Date:

Cost:

To avoid misunderstanding, cost for each individual engagement will be pre-authorized by the Client based on the needs and scope of each individual engagement based on InSite Engineering LLC hourly rates. No deviations from the Scope of Work will be made without prior written consent from the Client. *Authorized* work will be billed on a time and materials basis at InSite rates included herein upon completion of each engagement.

\$2,500.00

Billed As:

🛛 Lump Sum

Not-to-Exceed Budget

Cost Plus Fixed Fee

Periodic Time and Materials Progress Payment

NGINEERING

401MichaelLane Page 2 of 7

Proposal

Professional and Technical Services

The following classifications and associated unit rates are general and will be used as guidelines for the services of professional disciplines offered. Legal preparation and testimony are billed at two times these rates. Rates are

Classification	Rate/Hour
Principal Engineer	\$150.00
Sr. Professional Engineer	\$125.00
Professional Engineer	\$100.00
Engineer Intern	\$85.00
GIS/IT Engineer	\$125.00
GIS/IT Technician	\$90.00
Sr. Civil Designer	\$115.00
Civil Designer	\$90.00
CADD Technician	\$65.00
Administrative/Clerical	\$50.00
Resident Project Representative	\$60.00
Student Intern	\$50.00

Reimbursable Expenses

subject to be updated once annually.

Automobile Travel	Current IRS Rate
Other travel and subsistence expenses	Cost +15%
Subconsultant Services	Cost + 15%
Agency Review Fees	Cost + 15%
Outside Printing and Plotting Fees	Cost + 15%
Other Reimbursable Expenses	Cost + 15%

In-House Printing and Plotting Fees:

24" x 36" Black and White Prints/Plots \$2.00/s	sheet
12" x 18" Black and White Prints/Plots\$1.00/s	sheet
8.5" x 11" Black and White Prints/Plots \$0.10/	′page
24" x 36" Color Prints/Plots \$16.00/s	sheet
12" x 18" Color Prints/Plots \$8.00/s	sheet
8.5" x 11" Color Prints/Plots \$0.45/	′page
Large Format Scanning \$3.25/s	sheet
Small Format Scanning \$1.00/	′page

Effective January 1, 2021 (Replaces Schedule of Fees dated January 1, 2019)

Rate/Hour

WORK ORDER

DATE ORDERED November 29, 2021	JOB NO
CLIENT Slate Barganier Builders	DESCRIPTION OF PROJECT
ADDRESS 3121 Blue Lake Drive	City of Mountain Brook Drainage Ordinance Evaluation and remediation at 401 Michael Lane
Vestavia, AL 35243	

 Boundary Description Topographic Utility As Built Title Plat Construction Staking Other: _ 	 Engineering Report Grant Application Design Construction Plans Specifications Subdivision — Preliminary Subdivision — Final Plat Other: <u>Drainage Calculations</u> 	 Boundary Map Title Plat Plot Plan Topographic Map Utility Map Construction Plans Subdivision Plat Other: _

REMARKS

- All work to be completed according to Scope of Work attached dated November 29, 2021
- No changes in scope will be made without prior written consent from the Client.
- InSite Engineering LLC will initiate this project upon of receipt of written authorization to proceed. Planned
 completion dates for specific task will be agreed in writing between the Client and InSite Engineering LLC
- This project will be conducted under the terms and conditions indicated by the checked box below.

 - Specific Contract between the Client and InSite Engineering LLC dated ______.
 - Client Purchase Order Number _____, dated _____
- This work order should be signed by an authorized representative for the Client. Formal authorization in the form of this signed agreement must be received prior to commencing work.
- By signing this Work Order, The Client agrees and accepts the terms of this written agreement as contractually binding between The Client and InSite Engineering LLC
- This written agreement constitutes the whole agreement between The Client and InSite Engineering LLC and not
 other conditions, written or otherwise, other than those stated herein apply.
- Payment is due upon completion of the agreed work and receipt of invoice or, if the project is ongoing, due monthly upon receipt of invoice. If work is not completed due to no fault of InSite Engineering LLC payment will be due for services to date. In the event of payment not being made and a lawyer is employed, the Client will be liable for any and all legal fees necessary for debt collection.

Authorized By:	InSite Approval By:
Slate Barganier Building	
Signature	Signature JAR Salaria
Name	Name Matt S. Golab, P.E.
Title	Title Sr. Project Engineer
Date	Date November 29, 2021

| 5800 Feldspar Way | Hoover, AL 35244 | 205.733.9696 | FX 205.733.9697 | www.InSiteengineering.org

WORK ORDER

| 5800 Feldspar Way | Hoover, AL 35244 | 205.733.9696 | FX 205.733.9697 | www.InSiteengineering.org

TERMS AND CONDITIONS

7.

1. References herein to "InSite" refer to InSite Engineering LLC, "Client" shall mean **Community Services Programs of West Alabama, Inc. (Tuscaloosa, Alabama).** References herein to "Project" mean the project as defined in InSite written Scope of Work or proposal to the Client. Any proposal submitted by InSite for the performance of a proposed Project shall be firm for a period of sixty (60) days. Upon the expiration of such period, InSite reserves the right to modify the proposed basis of payment and fees to allow for changing costs and to adjust the time of performance to confirm to changing work loads.

2. Unless InSite's proposal provides otherwise, the proposed fees constitute InSite's estimate of the probable cost required to complete the proposed Project. The estimated probable cost identified in InSite's proposal shall not be deemed to be either a guaranteed maximum or "guaranteed not-to-exceed" amount with respect to the cost of performing the Project identified in any such proposal. However, in performing any Project, InSite will not proceed to expend more than the amount identified as the estimated probable cost in InSite's proposal without the Client's prior approval.

3. Cost and schedule commitments contained in InSite's proposal shall be subject to renegotiation for unreasonable delays caused by the Client's failure to provide specified facilities or information or for delays caused by unpredictable occurrences such as fires, floods, strikes, riots, unavailability of labor or materials or services, process shutdown, acts of God or of the public enemy, or acts of regulations of any governmental agency. Work stoppage or interruption caused by any of the above may result in additional cost (requiring a change in scope) beyond that identified in InSite's proposal for performance of the Project, entitling InSite to an adjustment to the cost and schedule.

4. Payment. Where the method of payment for InSite's services is on a timeand-material or cost reimbursable basis, the following commercial terms shall apply:

a. The minimum time segment for charging of field work is four (4) hours. For work done at any of InSite's offices, the minimum time segment for charging is one-half hour. There is no premium charge for overtime.

b. Where any agreement is based on the salary cost of specific individuals, normal and customary salary increases will become effective immediately upon InSite authorization and will be reflected in the next invoice submitted to the Client.

c. Expenses properly chargeable to the Project shall include: travel and living expenses of InSite personnel on business connected with the project; shipping costs; reproduction and bindery costs at InSite's standard rates; equipment rental charges; professional, analytical and technical subcontractors and advisors retained in connection with the Project; identifiable drafting and stenographic supplies; and expendable materials and supplies purchased specifically for the Project. A 15 percent handling and administrative charge will be added to all third party Project expenses. In lieu of all other itemized telephone and facsimile communication charges, and computer support, a telecommunications charge/computer support charge of five percent of the amount of InSite labor charges covered by any InSite proposal are subject to local or state taxes or fees, such additional costs will be charged to the Project and reimbursed by the Client.

5. Invoices. Invoices will be submitted on a monthly basis payable upon receipt. Unpaid balances shall be subject to interest at the rate of 1.5 percent per month or the maximum permissible under state law, whichever is less, starting 30 days from the invoice date. Payments received will be applied first to any unpaid fees. In addition, InSite may, after giving seven (7) days written notice, suspend services under any agreement without liability until all past due accounts (including fees and accrued interest) have been paid. Timely payment is a substantial condition of Client's performance of any agreement between InSite and Client. In the event InSite must take legal action to be paid for its services and prevails, all collection and legal costs associated with such action shall be reimbursed by the Client.

6. Except as provided in Paragraph 5, any agreement may be terminated in whole or in part in writing by either party in the event of substantial or material failure by the other party to fulfill its obligations under such agreement through no fault of the terminating party, provided that no such termination shall be effective unless the other party is given 1) not less than ten (10) calendar days written notice of intent to terminate and 2) an opportunity for consultation with the terminating party prior to the effective date of such termination. A final invoice will be calculated on the first or

fifteenth of the month (whichever comes first) following the effective date of termination.

a. Where the method of payment is based on a "lump sum" the final invoice will be based on the percentage of the work completed up to the effective date of termination.

b. Where the method of payment is based on time and materials, the final invoice will be based on reimbursement for all services and expenses associated with the Project up to the effective date of termination.

c. Where the method of payment is based on cost plus a fixed fee, the final invoice will be based on reimbursement for all costs up to the effective date of termination and a pro-rata share of the fixed fee.

d. Where the method of payment is based upon a payment schedule, a payment schedule will be attached to and made part of these terms as "Exhibit A – Periodic Payment Schedule" and signed by all parties to this agreement.

For each of the above methods of preparing the final invoice, there shall be an additional charge for Project closeout equal to three percent of all Project billings up to the effective date of termination. This closeout charge shall not be considered a penalty, but represents an allowance for recovery of costs for demobilization and reassignment of personnel and equipment on short notice.

Right-of-Entry. Client agrees to grant InSite the right to:

a. Enter or access any and all property necessary as required to complete the Scope of Work;

b. Perform the engineering services described in the Scope of Work;

c. Cut or remove any vegetation necessary and remove any other objects interfering with the completion or progression of the Project; and

d. Assign without notice this agreement or any part thereof as InSite shall deem necessary for the completion of the Project.

8. Insurance. Client agrees that InSite's liability for professional negligent acts, errors, or omissions under this agreement shall be limited to the amount of the fee charged, unless an additional fee of 5% of the liability amount desired by the Client to be paid to InSite. Additional liability insurance amounts requested by the Client will be attached to and made part of these terms as "Exhibit B – Additional Liability Insurance" and signed by all parties to this agreement.

9. Indemnification

InSite shall indemnify and hold harmless the Client, its directors, officers, a employees, and agents from and against all liability, claims, suits, losses, damages, costs and demands, including reasonable legal expenses and attorney's fees connected therewith, on account of personal injury, including death, or property damage, sustained by any person or entity not a party to any agreement between InSite and Client and arising out of or connected with the performance of such agreement, to the extent such injury, death or damage is caused by the sole or contributory negligence or willful misconduct of InSite or its subcontractors or their respective employees, officers and agents; provided that such injury, death or damage is not occasioned by the sole negligence of Client or its contractors or their respective employees, officers and agents; and provided further, that InSite's liability under this indemnity provision shall be limited to and not exceed the insurance coverages and associated limits of liability which InSite is required to secure pursuant to Paragraph 7, hereof; and provided further, that InSite's obligation hereunder shall not exceed to indemnification or holding harmless of a party indemnified hereunder for any claims of loss of profits or any other indirect, special, incidental or consequential damages of any nature whatsoever.

b. Client shall indemnify and hold harmless InSite and its directors, officers, employees, and agents from and against all liability, claims, suits, losses, damages, costs and demands, including reasonable legal expenses and attorney's fees connected therewith, on account of personal injury, including death, or property damage, sustained by any person or entity not a party to any agreement between

| 5800 Feldspar Way | Hoover, AL 35244 | 205.733.9696 | FX 205.733.9697 | www.InSiteengineering.org

TERMS AND CONDITIONS

InSite and Client and arising out of or connected with the performance of such agreement, to the extent such injury, death or damage is caused by the sole or contributory negligence or willful misconduct of Client or its contractors or their respective employees, officers and agents; provided that such injury, death or damage is not occasioned by the sole negligence of InSite or its subcontractors or their respective employees, officers and agents; and provided further, that Client's obligation hereunder shall not extend to indemnification or holding harmless of a party indemnified hereunder for any claims of loss of profits or any other indirect, special, incidental or consequential damages of any nature whatsoever.

c. The provisions of this Paragraph 8 shall survive the completion of the Project or the expiration, cancellation or termination of any agreement between InSite and Client.

10. Standard of Care

a. While performing services under any agreement, InSite shall exercise that degree of care and skill ordinarily exercised under similar circumstances by members of the civil engineering and consulting profession performing the kind of services to be performed thereunder and practicing in the same or similar locality at the same time and that the proper venue for litigation of any cause or action hereto shall be that court of jurisdiction in Tuscaloosa County, Alabama.

b. Client agrees that InSite shall not be responsible or liable in any way for the conduct, work, or damages or resulting loss incurred by any action by any sub-contractor(s) associated with this Project.

b. Except for the express promise set forth in subparagraph a., above, regarding InSite's standard of care, InSite neither makes, nor offers, nor shall InSite be liable to Client for any express or implied warranties with respect to the performance of InSite's services. Estimates of cost, approvals, recommendations, opinions, and decisions by InSite are made on the basis of InSite's experience, qualifications, and professional judgment and are not guaranteed. InSite shall not be regarded as a guarantor with respect to any work product provided to Client. THE IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY WAIVED BY CLIENT.

c. InSite agrees to reperform and correct at its expense any work or services performed by InSite which fails to conform to the standard of care that InSite has accepted pursuant to subparagraph a., above.

d. In no event shall InSite and InSite's officers, directors, employees, agents and independent professional consultants, and any of them, be liable to Client and/or anyone claiming by, through or under Client, including Client's insurers, for any lost, delayed, or diminished profits, revenues, or opportunities; losses by reason of shutdown or inability to utilize or complete work at the site of the Project; or any other incidental, special, indirect, or consequential damages of any kind or nature whatsoever resulting from InSite's performance or failure to perform services pursuant to any agreement.

e. InSite and InSite's officers, directors, employees, agents and independent professional consultants, and any of them, shall not be liable to Client and/or anyone claiming by, through or under Client, including Client's insurers, nor shall InSite be liable to indemnify Client pursuant to Paragraph 8, hereof, in an amount which exceeds (i) the total compensation value to InSite of the Project, if the claims of Client or Client's insurers against InSite are not covered by the insurance coverages and associated limits of liability which InSite is required to maintain pursuant to Paragraph 7 hereof or (ii) the liability amount specified in Paragraph 7, if the claims of Client or Client's insurers against InSite are covered by the insurance coverages and associated limits of liability which InSite is required to maintain pursuant to Paragraph 7 hereof. The Client hereby forever releases InSite and its officers, principals, employees and agents from any liability for losses or damages sustained and incurred by the Client in excess of such amount.

f. As used in Paragraph 9, the term "liable" or "liability" means liability of any kind, whether in contract (including breach of warranty), in tort (including negligence, whether of InSite or others), in strict liability, for indemnity, or otherwise, for any and all injuries, claims, losses, expenses or damages whatsoever arising out of or in any way related to InSite's services from any cause or causes whatsoever, including but not limited to the negligence, errors, omissions, strict liability or breach of contract of InSite and/or InSite's officers, directors, employees, agents and independent professional consultants, or any of them. The provisions of this Paragraph 9 providing for limitations of and protections against InSite's liability shall survive the completion of the Project or the expiration, cancellation, or termination of any agreement between InSite and Client, and such provisions shall apply to the full extent permitted by law.

11. Client agrees that InSite has authority to use its name as a Client and a general description of the Project as a reference for other prospective Clients. All original papers and documents and all work products and copies thereof, produced as a result of this agreement, shall remain the property of InSite and may be used by InSite without prior consent of the Client.

12. If InSite personnel are called or subpoenaed for depositions, examination, or court appearances in any dispute arising out of the Project, InSite shall be reimbursed on a time and material basis in accordance with InSite's then current, standard billing rates for such matters, including all out-of-pocket costs incurred in connection with such matters.

13. If any of these General Terms and Conditions shall be finally determined to be invalid or unenforceable in whole or in part, the remaining provisions hereof shall remain in full force and effect and be binding upon the parties. The parties agree to reform the contract between them to replace any such invalid or unenforceable provision with a valid and enforceable provision that comes as close as possible to the intention of the stricken provision.

14. Once the Client has signified its acceptance of InSite's proposal, the express terms of InSite's proposal to Client and these General Terms and Conditions shall constitute the complete and exclusive statement of the terms of the agreement between the parties and are intended as a final expression of the terms of such agreement, representations or conditions, express or implied, oral or written. No provision of InSite's proposal or these General Terms and Conditions may be waived, altered, or modified in any manner, unless the same shall be set forth in writing and signed by a duly authorized officer of InSite. Client may use its standard business forms (such as purchase orders) to administer any agreement between InSite and Client, but use of such forms shall be for convenience purposes only, and any typed provision in conflict with the terms of InSite's proposal or these General Terms and Conditions and all pre-printed terms and conditions contained in or on such forms shall be deemed stricken and null and void.

December 6, 2021

Mr. Glen Merchant, Building Official The City of Mountain Brook 56 Church Street Mountain Brook, Alabama 35213

Subject: 401 MICHAEL LANE SUBMITTAL OF DRAINAGE PLAN AND CALCULATIONS SLATE BARGANIER BUILDING InSite Project No. 21146.00

Dear Mr. Merchant:

At the request of the Slate Barganier Building, InSite Engineering conducted an analysis of the storm water impact of the development of the lot located at 401 Michael Lane. The goal of this analysis is to use the data generated to evaluate the increase, if any, of storm water as created by the proposed residential dwelling and the associated increase of impervious surface. Additionally, a plan for the capturing and detaining any increased runoff generated, to a point that would match or decrease the flow from the site on all required storm-return periods as required by the City of Mountain Brook would be developed. The associated plan and detail for this plan would be designed and included.

METHODOLOGY

The basin was analyzed using the SCS Method. The SCS Method is an imperical method of rainfall abstraction based on the potential for the soil to absorb a certain amount of moisture and is commonly used and widely accepted method of determining peak flows for a given watershed. Natural Resources Conservation Service (NRCS) maps were used to determine the soils in the area and are attached to this report. It is necessary to determine the soil type, and absorption qualities, to classify the soils into groups. The group that a soil is classified into has a direct correspondence to the determining of the Curve Number used in the SCS Method Calculations. Slate Barganier provided InSite Engineering with topography, on one foot contour intervals, to allow for a more detailed determination of slope in the watershed. The slope is another critical factor in the determination of the Curve Number for the soil and/or other impervious improvements. This allowed for more accurate approximations of time of concentrations and Curve Number adjustments. USGS Quadrangle maps were also utilized in the development of the basin and the corresponding sub-basins.

Once all the information required to develop the watershed was gathered, the calculations were performed on the basin. During the evaluation of the basin, sub-basins were developed to determine flows more accurately from areas of the site. These sub-basins were then routed to the outfall point for the basin. A peak flow at the outfall point was determined on all storm return periods. For this evaluation, the storm return periods that were analyzed, and included in this report, were the 2, 5, 10, 25, 50, and 100 year storm return periods.

Upon completion of the watershed analysis, and the obtaining of a peak flow for the storm return periods, the site and proposed grading were evaluated to determine options for detaining the post-development flow at the given flow situation. Various programs were utilized to obtain performance curves, storage rates, free board, and associated storage criteria. The findings for both the basin analysis, including time of concentration calculations and the pipe performance evaluation are detailed below.

FINDINGS

The basin was analyzed and determined to encompass approximately 0.39 aces +/-. This was based on the topography provided by the Slate Barganier. Upon further examination the basin was then divided into 2 pre-development sub-basins and 5 post-development sub-basins. This was based on topography, travel path properties for the lot. The sub-basins are shown on maps in attached to this report.

The soils in this area were determined using the NRCS soil maps and were found to be "very poorly drained" for all the basins. This along with other references pushed all of the watershed into the SCS Soil Group D. The soil map and the listings of the soil in the area can be found attached to this report.

PRE-DEVELOPMENT SUB-BASINS

The pre-development sub-basins were evaluated, and flows were determined. The report generated can be found attached to this report. However, a summary of the two pre-development sub-basins are listed below:

Pre-Development Sub-Basin 1 is the southern portion of the site. This basin was determined, combined with sub-basin 2 and then a reach to the outfall location of the basin was utilized. This Sub-basin contained "very poorly drained" soils.

Area = 0.09 acres Curve Number (CN): 0.02 acres = CN of 85 0.07 acres = CN of 84 Composite Curve Number = 84 Time of Concentration = 2 minutes 25-year Storm Return = 0.544 cfs

Pre-Development Sub-Basin 2 is the northern portion of the site. This basin was determined, combined with sub-basin 2 and then a reach to the outfall location of the basin was utilized. This Sub-basin contained "very poorly drained" soils.

Area = 0.30 acres Curve Number (CN): 0.05 acres = CN of 83 0.12 acres = CN of 86 0.06 acres = CN of 98 Composite Curve Number = 88 Time of Concentration = 3.7 minutes 25-year Storm Return = 2.468 cfs

Upon determination of the sub-basins, they were each combined and routed as necessary to model accurately the drainage patterns of the basin. This resulted in the determination of a peak

flow for all the storm return periods. The detailed summary of this can be found attached to this report. However, a summary of the peak flow at the outfall of the watershed is listed below:

2-year storm return period = 1.315 cfs 5-year storm return period = 1.683 cfs 10-year storm return period = 2.004 cfs 25-year storm return period = 2.468 cfs 50-year storm return period = 2.846 cfs 100-year storm return period = 3.239 cfs

POST-DEVELOPMENT SUB-BASINS

The post-development sub-basins were evaluated, and flows were determined. The report generated can be found attached to this report. However, a summary of the five post-development sub-basins are listed below:

Post-Development Sub-Basin 1

Area = 0.10 acres Curve Number (CN): 0.02 acres = CN of 98 0.08 acres = CN of 83 Composite Curve Number = 84 Time of Concentration = 2 minutes 25-year Storm Return = 0.605 cfs

Post-Development Sub-Basin 2.

Area = 0.06 acres Curve Number (CN): 0.04 acres = CN of 83 0.02 acres = CN of 98 Composite Curve Number = 88 Time of Concentration = 2.1 minutes 25-year Storm Return = 0.387 cfs

Post-Development Sub-Basin 3.

Area = 0.03 acres Curve Number (CN): 0.01 acres = CN of 98 0.02 acres = CN of 85 Composite Curve Number = 89 Time of Concentration = 2 minutes 25-year Storm Return = 0.194 cfs

Post-Development Sub-Basin 4.

Area = 0.03 acres Curve Number (CN): 0.02 acres = CN of 98 0.01 acres = CN of 85 Composite Curve Number = 94 Time of Concentration = 2 minutes 25-year Storm Return = 0.208 cfs

Post-Development Sub-Basin 5

Area = 0.17 acres Curve Number (CN): 0.10 acres = CN of 98 0.02 acres = CN of 85 0.05 acres = CN of 86 Composite Curve Number = 93 Time of Concentration = 2.9 minutes 25-year Storm Return = 1.166 cfs

Upon determination of the sub-basins, they were each combined and routed as necessary to model accurately the drainage patterns of the basin. This resulted in the determination of a peak flow for all the storm return periods. The detailed summary of this can be found attached to this report. However, a summary of the peak flow at the outfall of the watershed is listed below:

2-year storm return period = 1.411 cfs 5-year storm return period = 1.778 cfs 10-year storm return period = 2.097 cfs 25-year storm return period = 2.559 cfs 50-year storm return period = 2.935 cfs 100-year storm return period = 3.326 cfs

REQUIRED DETENTION AREAS

Upon completion of the analysis, it was determined that the proposed residential site plan caused an increase in storm water runoff on all storm return periods. The basins were then evaluated and routed to create detention within the site to achieve reduction of the runoff amounts to that equal to or less than the pre-development conditions. To achieve these results for this site, two detention areas were required to achieve the necessary reduction in flows. These two areas are referred to as the upper detention area and the lower detention area. These areas will be utilized to detain the flow to a point that the peak flow for all storm return periods will be less than or equal to the pre-development flows.

Both detention areas are utilizing six-inch drop pipes to achieve the necessary reduction in peak flow amounts. These structures and locations are detailed on the drainage plan drawing as attached to this report. These detention areas will tie to proposed storm sewer that is being installed as part of the lot development and is detailed on the attached drawings as well. Performance of both of the detention areas are detailed in the attached hydraulic analysis, however, a summary of the peak outflows for the lot when utilizing are listed below along with the pre-development peak flow for comparison.

Storm Return Period	Pre-Development Flow (CFS)	Post-Development Flow (CFS)
2	1.315	1.316
5	1.683	1.631
10	2.004	1.844
25	2.468	2.125
50	2.846	2.356
100	3.239	2.602

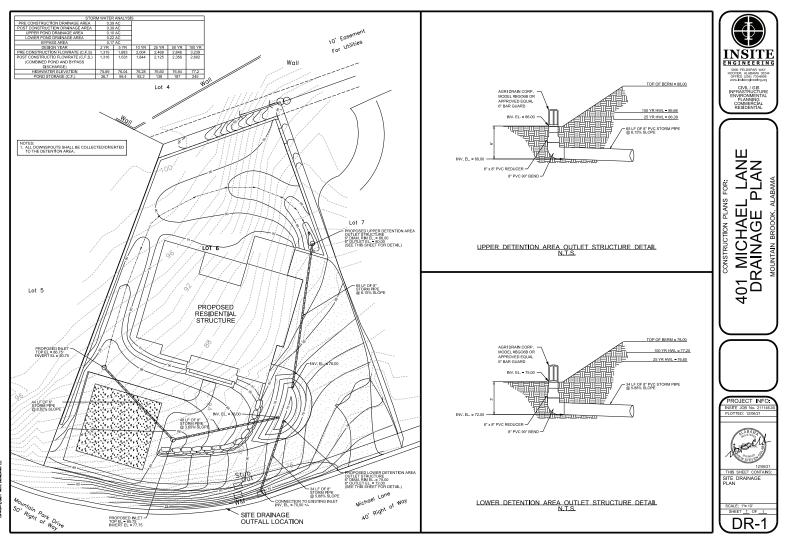
CONCLUSIONS

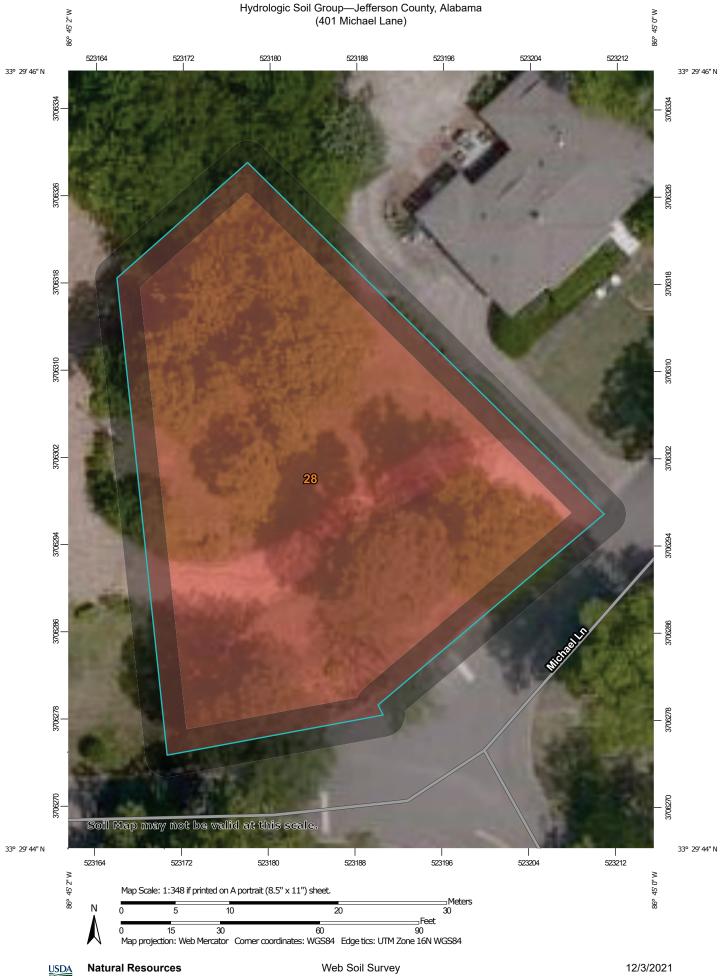
The proposed development as originally arranged created an increase of peak flow from storm water runoff on all the storm return periods. Upon evaluation, it was determined that there was a need for detention to control this peak flow increase. Based on site topography, and the proposed grading for the residential development, a plan was designed that generated a post-development peak flow that was either reduced or matched the pre-development peak flow for this basin. This design includes the utilization of two (2) detention areas that are detailed in the attached documentation.

It is in my opinion that the development of 401 Michael Lane will have no adverse effects on downstream drainage if the project is constructed in accordance with the plans and details prepared by our firm for the grading and detention. However, construction of this site will be at the discretion of the owner and I, as engineer, will have no direct supervision of the construction process.

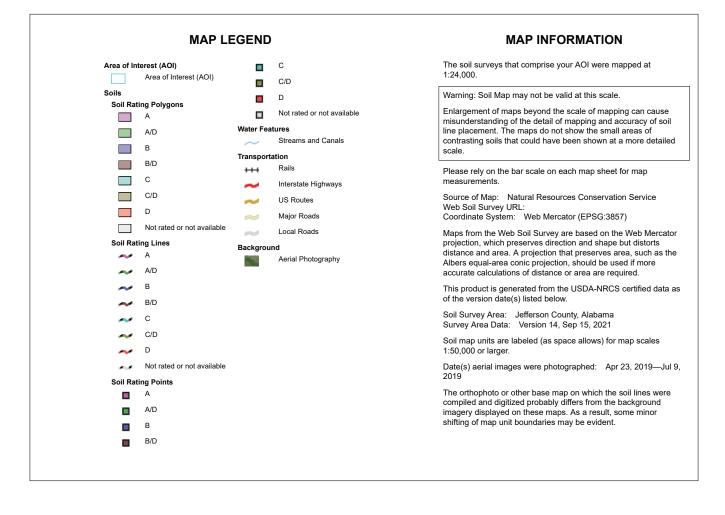
The function of either existing improvements, existing downstream conditions, on this site or prior improvements to other adjacent upstream or downstream properties may pose adverse effects downstream. The purpose of this development, as proposed, will not necessarily cure pre-existing off site adverse conditions.

We appreciate the opportunity to be of service to the City of Mountain Brook. If you have any questions or need any additional information, please give us a call at (205) 733-9696.


Sincerely,


InSite Engineering, LLC

11/


Matt S. Golab, P.E.

Copy: InSite File 21005.00/7.4

Web Soil Survey National Cooperative Soil Survey Hydrologic Soil Group—Jefferson County, Alabama (401 Michael Lane)

USDA

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 12/3/2021 Page 2 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
28	Montevallo-Nauvoo- Urban land complex, 10 to 40 percent slopes	D	0.4	100.0%
Totals for Area of Intere	est	1	0.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

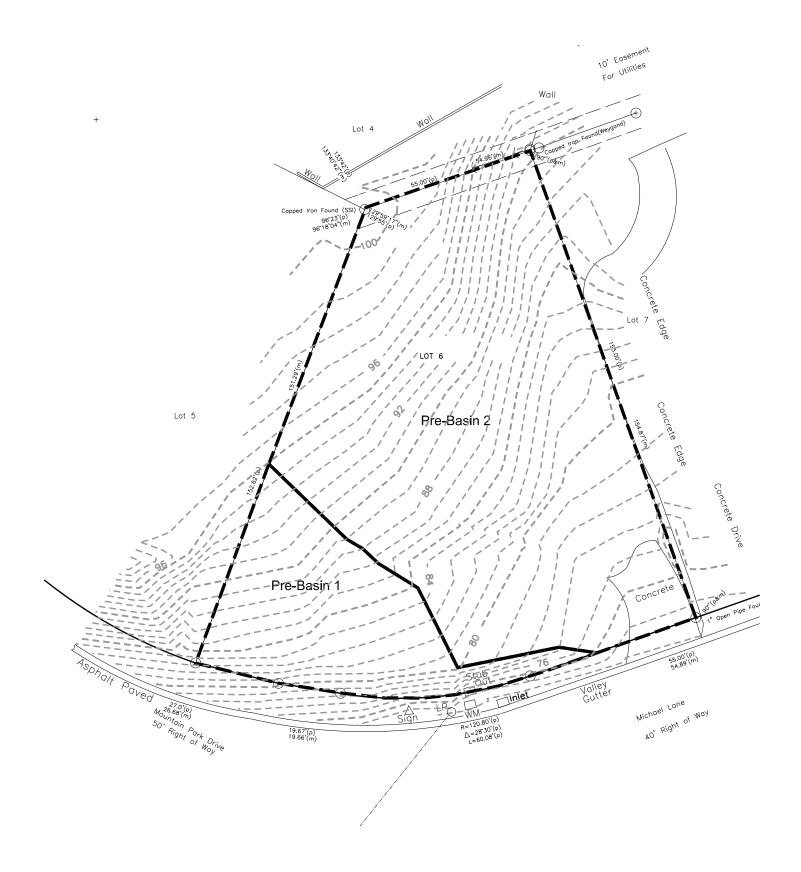
Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

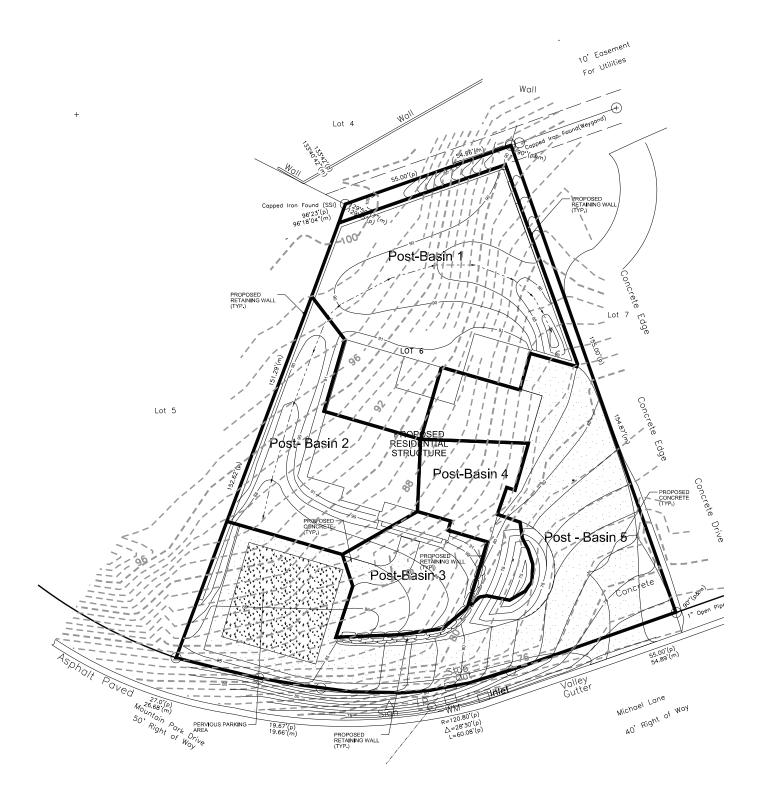
For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified


Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher


The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Pre-Development Basins

Post-Development Basins

401 Michael Lane Tc Calculations

Description Pre Basin 1 to Outfall Pre Basin 2 to Outfall	SF		0.20 10.07 4.49 0.00	SCF Lf S.ft/ll k V T, hrs 9 0.52 10.07 7.27 0.00 142 0.11 14.993 4.95 0.01	SCF Lf S.R/ft k V T.hrs 0 0.00 4.9969 0.30 0.00 0 0.00 4.9969 0.30 0.00	SCF Lf S.R/H k V T,hrs 0 0.01 14.9930 1.78 0.00 0 0.01 14.9930 1.78 0.00	Lf V T, hrs 0 2.00 0.00	F-2 Lf V T, hrs 0 5.00 0.00 0 5.00 0.00	Tc.hr:Tc.min Lag.hrs 0.02 1.19 0.01 0.06 3.67 0.04	SF Table 0.011 Smoth Sufrace 0.05 Fallow (no residye) Cultivated 0.06 Residue Cover < 20% 0.17 Residue Cover < 20% Grass
										0.15 Short grass, praine 0.24 Dense grasses 0.41 Bernudagrass 0.13 Range (natural) Woods 0.4 Light underbrush 0.8 Dense underbrush SCF Table
			POST BASINS							
Description	SF	4.1 SCF		SCF	SCF	SCF		F-2		k Description
	n Lf S, f	ft/ft T, hrs Lf S	S, ft/ft k V T, hrs	Lf S, ft/ft k V T, hrs	Lf S, ft/ft k V T, hrs	Lf S, ft/ft k V T, hrs	Lf V T, hrs	Lf V T, hrs	Tc, hr: Tc, min Lag, hrs	2.4934 Forest w/ heavy ground litter 4.9869 Woodland
Post Basin 1 to Detention Post Basin 2 to Detention Post Basin 3 to Detention	0.01 31 0.1 0.24 13 0.0 0.24 18 0.1	04 0.03 60	0.05 14.993 3.45 0.00	16 0.08 14.993 4.11 0.00 0 0.08 14.993 4.11 0.00 0 0.08 14.993 4.11 0.00	81 0.02 14.9930 2.35 0.01 0 0.02 14.9930 2.35 0.00 0 0.02 14.9930 2.35 0.00	0 0.01 14.9930 1.78 0.00 0 0.01 14.9930 1.78 0.00 0 0.01 14.9930 1.78 0.00	0 2.00 0.00 0 2.00 0.00 0 2.00 0.00	0 5.00 0.00 0 5.00 0.00 0 5.00 0.00	0.02 0.99 0.01 0.04 2.11 0.02 0.03 1.66 0.02	6.9882 Short grass pasture 8.9895 Cultivated short row 10.007 Nearly bare & untilled
Post Basin 3 to Detention Post Basin 4 to Detention Post Basin 5 to Outfall	0.24 18 0.1 0.01 31 0.1 0.24 22 0.0	2 0.00 23	0.01 20.308 2.03 0.00	10 0.08 14.993 4.11 0.00 10 0.33 14.993 8.61 0.00 83 0.09 20.308 6.11 0.00	0 0.02 14.9930 2.35 0.00 0 0.02 14.9930 2.35 0.00 0 0.02 14.9930 2.35 0.00	0 0.01 14.9930 1.78 0.00 0 0.01 14.9930 1.78 0.00 0 0.01 14.9930 1.78 0.00	0 2.00 0.00 0 2.00 0.00 0 2.00 0.00	0 5.00 0.00 0 5.00 0.00 0 5.00 0.00	0.03 1.66 0.02 0.01 0.38 0.00 0.05 2.85 0.03	14.993 Grassed 16.109 Unpaved 20.308 Paved

Hydrograph Return Period Recap	1	
--------------------------------	---	--

2 - Year	
Summary Report	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, Pre-Development Basin 1	3
Hydrograph No. 2, SCS Runoff, Pre-Development Basin 2	4
Hydrograph No. 3, Combine, Total Pre-Devlopment Flow to Outfall	5
Hydrograph No. 5, SCS Runoff, Post-Development Basin 1	. 6
Hydrograph No. 6, Reservoir, Upper Detention	. 7
Pond Report - 401 Upper Detention	
Hydrograph No. 7, SCS Runoff, Post-Development Basin 2	
Hydrograph No. 8, SCS Runoff, Post-Development Basin 3	
Hydrograph No. 9, SCS Runoff, Pre-Development Basin 4	11
Hydrograph No. 10, Combine, Total Flow to Lower Detention	12
Hydrograph No. 11, Reservoir, 401 Michael Performanc	13
Pond Report - 401 Michael Detention	
Hydrograph No. 12, SCS Runoff, Post-Development Basin 5	15
Hydrograph No. 13, Combine, Total flow undetained	16
Hydrograph No. 14, Combine, Total Post Flow to Outfall	17

5 - Year

Summary Report	18
Hydrograph Reports	19
Hydrograph No. 1, SCS Runoff, Pre-Development Basin 1	
Hydrograph No. 2, SCS Runoff, Pre-Development Basin 2	20
Hydrograph No. 3, Combine, Total Pre-Devlopment Flow to Outfall	21
Hydrograph No. 5, SCS Runoff, Post-Development Basin 1	22
Hydrograph No. 6, Reservoir, Upper Detention	23
Hydrograph No. 7, SCS Runoff, Post-Development Basin 2	24
Hydrograph No. 8, SCS Runoff, Post-Development Basin 3	25
Hydrograph No. 9, SCS Runoff, Pre-Development Basin 4	26
Hydrograph No. 10, Combine, Total Flow to Lower Detention	
Hydrograph No. 11, Reservoir, 401 Michael Performanc	28
Hydrograph No. 12, SCS Runoff, Post-Development Basin 5	29
Hydrograph No. 13, Combine, Total flow undetained	30
Hydrograph No. 14, Combine, Total Post Flow to Outfall	

10 - Year

Summary Report	32
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre-Development Basin 1	33
Hydrograph No. 2, SCS Runoff, Pre-Development Basin 2	34
Hydrograph No. 3, Combine, Total Pre-Devlopment Flow to Outfall	35
Hydrograph No. 5, SCS Runoff, Post-Development Basin 1	36
Hydrograph No. 6, Reservoir, Upper Detention	37
Hydrograph No. 7, SCS Runoff, Post-Development Basin 2	38
Hydrograph No. 8, SCS Runoff, Post-Development Basin 3	39
Hydrograph No. 9, SCS Runoff, Pre-Development Basin 4	40

	Hydrograph No. 10, Combine, Total Flow to Lower Detention	41
	Hydrograph No. 11, Reservoir, 401 Michael Performanc	. 42
	Hydrograph No. 12, SCS Runoff, Post-Development Basin 5	
	Hydrograph No. 13, Combine, Total flow undetained	
	Hydrograph No. 14, Combine, Total Post Flow to Outfall	
25	- Year	
	Summary Report	. 46
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Pre-Development Basin 1	
	Hydrograph No. 2, SCS Runoff, Pre-Development Basin 2	
	Hydrograph No. 3, Combine, Total Pre-Devlopment Flow to Outfall	. 49
	Hydrograph No. 5, SCS Runoff, Post-Development Basin 1	
	Hydrograph No. 6, Reservoir, Upper Detention	. 51
	Hydrograph No. 7, SCS Runoff, Post-Development Basin 2	. 52
	Hydrograph No. 8, SCS Runoff, Post-Development Basin 3	. 53
	Hydrograph No. 9, SCS Runoff, Pre-Development Basin 4	. 54
	Hydrograph No. 10, Combine, Total Flow to Lower Detention	55
	Hydrograph No. 11, Reservoir, 401 Michael Performanc	
	Hydrograph No. 12, SCS Runoff, Post-Development Basin 5	. 57
	Hydrograph No. 13, Combine, Total flow undetained	
	Hydrograph No. 14, Combine, Total Post Flow to Outfall	. 59

50 - Year

Summary Report	60
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre-Development Basin 1	
Hydrograph No. 2, SCS Runoff, Pre-Development Basin 2	62
Hydrograph No. 3, Combine, Total Pre-Devlopment Flow to Outfall	63
Hydrograph No. 5, SCS Runoff, Post-Development Basin 1	. 64
Hydrograph No. 6, Reservoir, Upper Detention	65
Hydrograph No. 7, SCS Runoff, Post-Development Basin 2	. 66
Hydrograph No. 8, SCS Runoff, Post-Development Basin 3	. 67
Hydrograph No. 9, SCS Runoff, Pre-Development Basin 4	68
Hydrograph No. 10, Combine, Total Flow to Lower Detention	. 69
Hydrograph No. 11, Reservoir, 401 Michael Performanc	70
Hydrograph No. 12, SCS Runoff, Post-Development Basin 5	71
Hydrograph No. 13, Combine, Total flow undetained	72
Hydrograph No. 14, Combine, Total Post Flow to Outfall	73

100 - Year

Summary Report	74
Hydrograph No. 1, SCS Runoff, Pre-Development Basin 1 7	75
Hydrograph No. 2, SCS Runoff, Pre-Development Basin 2 7	76
Hydrograph No. 3, Combine, Total Pre-Devlopment Flow to Outfall	77
Hydrograph No. 5, SCS Runoff, Post-Development Basin 1 7	78
Hydrograph No. 6, Reservoir, Upper Detention 7	79
Hydrograph No. 7, SCS Runoff, Post-Development Basin 2	30
Hydrograph No. 8, SCS Runoff, Post-Development Basin 3	31
Hydrograph No. 9, SCS Runoff, Pre-Development Basin 4	32

33
84
85
86
87
34 31

Hydrograph Return Period Recap

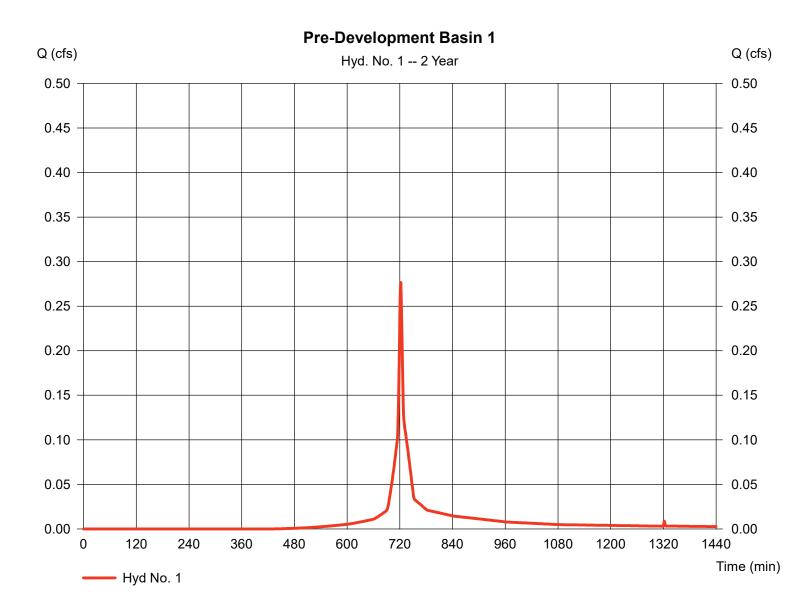
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type	Inflow Hyd(s)				Peak Out	flow (cfs)				Hydrograph description
	(origin)		1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	
1	SCS Runoff			0.277		0.362	0.436	0.544	0.633	0.725	Pre-Development Basin 1
2	SCS Runoff			1.049		1.336	1.586	1.948	2.242	2.548	Pre-Development Basin 2
3	Combine	1, 2		1.315		1.683	2.004	2.468	2.846	3.239	Total Pre-Devlopment Flow to Outfal
5	SCS Runoff			0.307		0.402	0.484	0.605	0.703	0.805	Post-Development Basin 1
6	Reservoir	5		0.301		0.393	0.467	0.516	0.595	0.671	Upper Detention
7	SCS Runoff			0.209		0.266	0.316	0.387	0.446	0.506	Post-Development Basin 2
8	SCS Runoff			0.104		0.133	0.158	0.194	0.223	0.253	Post-Development Basin 3
9	SCS Runoff			0.121		0.148	0.173	0.208	0.236	0.266	Pre-Development Basin 4
10	Combine	6, 7, 8, 9		0.731		0.937	1.113	1.254	1.448	1.639	Total Flow to Lower Detention
11	Reservoir	10		0.683		0.844	0.933	1.045	1.153	1.225	401 Michael Performanc
12	SCS Runoff			0.670		0.829	0.967	1.166	1.327	1.496	Post-Development Basin 5
13	Combine	5, 7, 8, 9,	12	1.411		1.778	2.097	2.559	2.935	3.326	Total flow undetained
14	Combine	11, 12,		1.316		1.631	1.844	2.125	2.356	2.602	Total Post Flow to Outfall
		haelBasiı									ec 6. 2021

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.277	1	722	753				Pre-Development Basin 1
2	SCS Runoff	1.049	1	723	3,073				Pre-Development Basin 2
3	Combine	1.315	1	723	3,826	1, 2			Total Pre-Devlopment Flow to Outfall
5	SCS Runoff	0.307	1	722	837				Post-Development Basin 1
6	Reservoir	0.301	1	723	837	5	86.15	18.1	Upper Detention
7	SCS Runoff	0.209	1	722	576				Post-Development Basin 2
8	SCS Runoff	0.104	1	722	288				Post-Development Basin 3
9	SCS Runoff	0.121	1	722	349				Pre-Development Basin 4
10	Combine	0.731	1	722	2,051	6, 7, 8, 9			Total Flow to Lower Detention
11	Reservoir	0.683	1	724	2,051	10	75.69	36.7	401 Michael Performanc
12	SCS Runoff	0.670	1	722	1,919				Post-Development Basin 5
13	Combine	1.411	1	722	3,970	5, 7, 8, 9, 1	2		Total flow undetained
14	Combine	1.316	1	723	3,970	11, 12,			Total Post Flow to Outfall
101	MichaelBasir	ns.gpw			Return F	Period: 2 Ye	ar	Monday, D	ec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

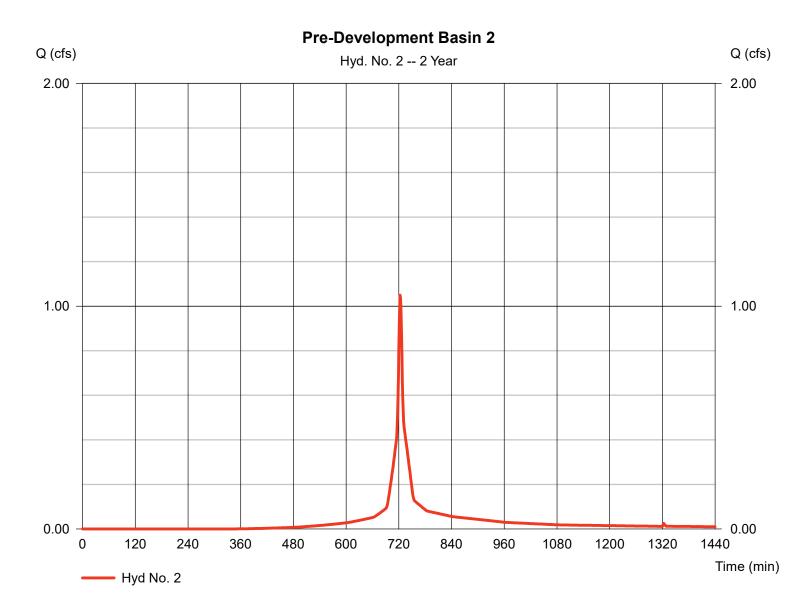
Hyd. No. 1

Pre-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.277 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 753 cuft
Drainage area	= 0.090 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
Total precip.	= 4.10 in	Distribution	= Type III

* Composite (Area/CN) = [(0.020 x 85) + (0.070 x 84)] / 0.090

Monday, Dec 6, 2021

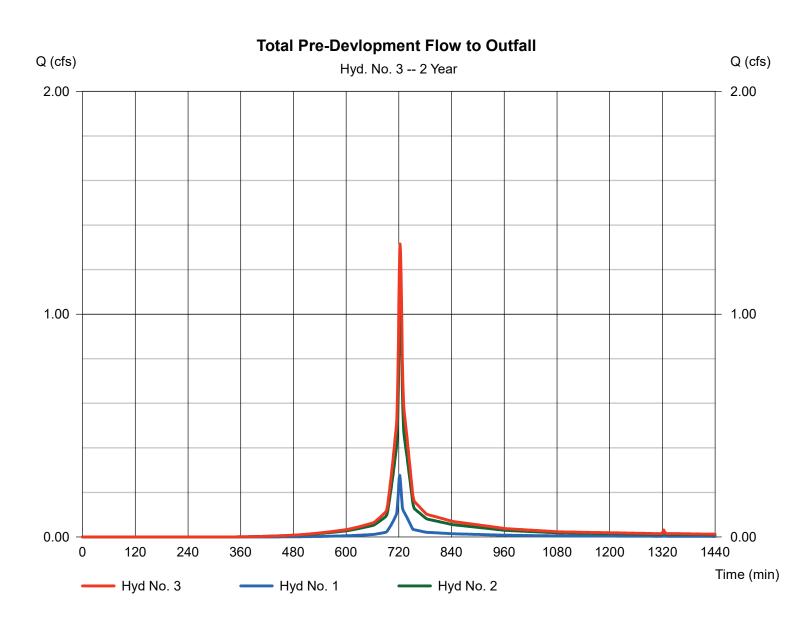

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Pre-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.049 cfs
Storm frequency	= 2 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 3,073 cuft
Drainage area	= 0.300 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 3.70 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.054 x 83) + (0.123 x 86) + (0.057 x 98) + (0.064 x 85)] / 0.300


4

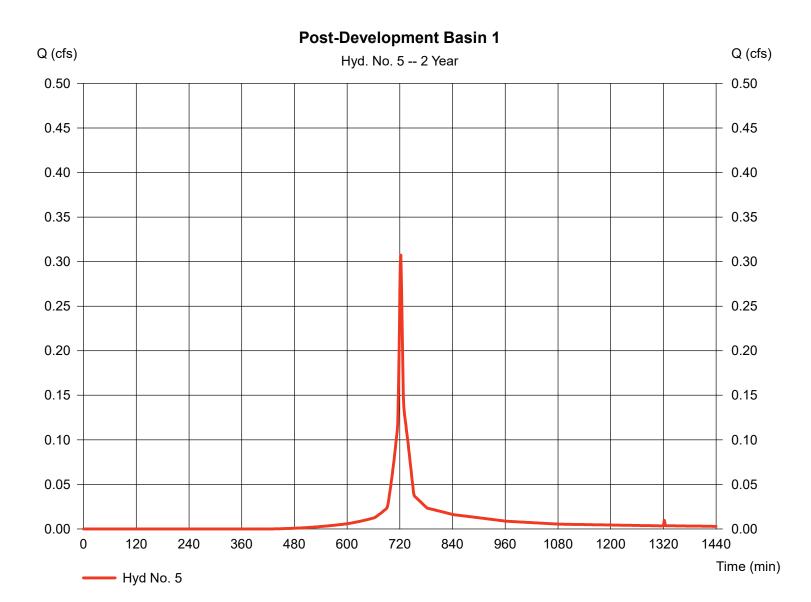
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Total Pre-Devlopment Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 1.315 cfs
Storm frequency	= 2 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 3,826 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	a = 0.390 ac

5


Hydraflow Hydrographs by Intelisolve v9.1

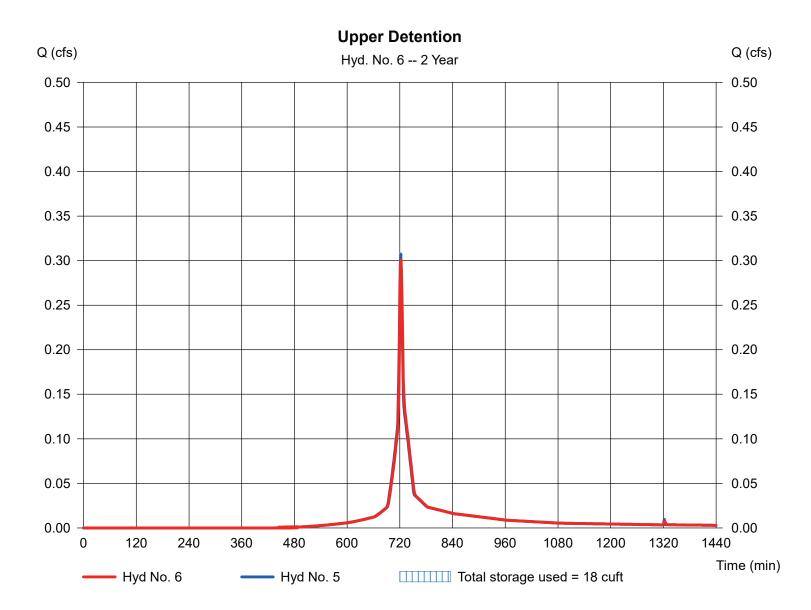
Hyd. No. 5

Post-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.307 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 837 cuft
Drainage area	= 0.100 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.020 x 83) + (0.060 x 80)] / 0.100

Monday, Dec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Upper Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.301 cfs
Storm frequency	= 2 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 837 cuft
Inflow hyd. No.	= 5 - Post-Development Basin 1	Max. Elevation	= 86.15 ft
Reservoir name	= 401 Upper Detention	Max. Storage	= 18 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.1

Pond No. 2 - 401 Upper Detention

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 86.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	86.00	90	0	0	
1.00	87.00	160	125	125	
2.00	88.00	330	245	370	

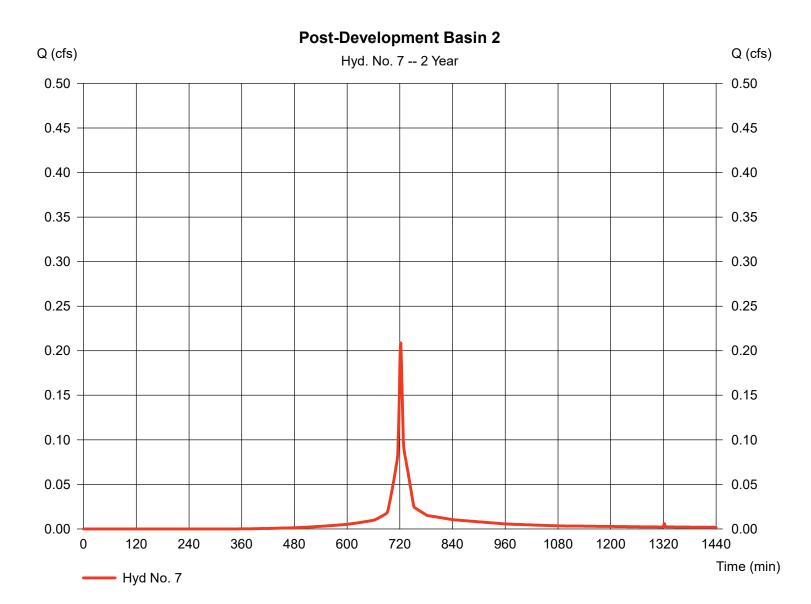
Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 8.00	0.00	0.00	0.00	Crest Len (ft)	= 1.57	0.00	0.00	0.00
Span (in)	= 8.00	0.00	0.00	0.00	Crest El. (ft)	= 86.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 80.00	0.00	0.00	0.00	Weir Type	= Riser			
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/Wet area))	
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

J	J .	J.											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	86.00	0.00				0.00						0.00
1.00	125	87.00	3.46 oc				0.83 ic						0.83
2.00	370	88.00	3.46 oc				1.17 ic						1.17


Hydraflow Hydrographs by Intelisolve v9.1

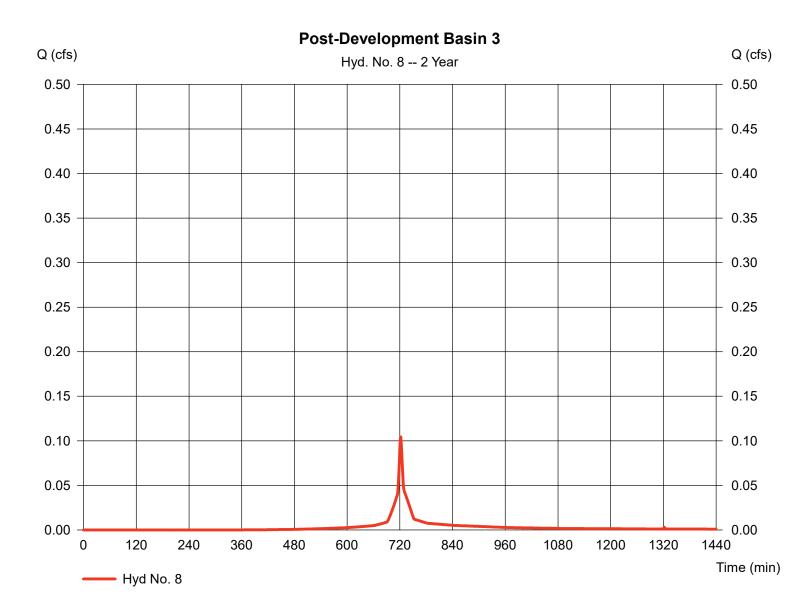
Hyd. No. 7

Post-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.209 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 576 cuft
Drainage area	= 0.060 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.11 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.037 x 83) + (0.020 x 98)] / 0.060

Monday, Dec 6, 2021

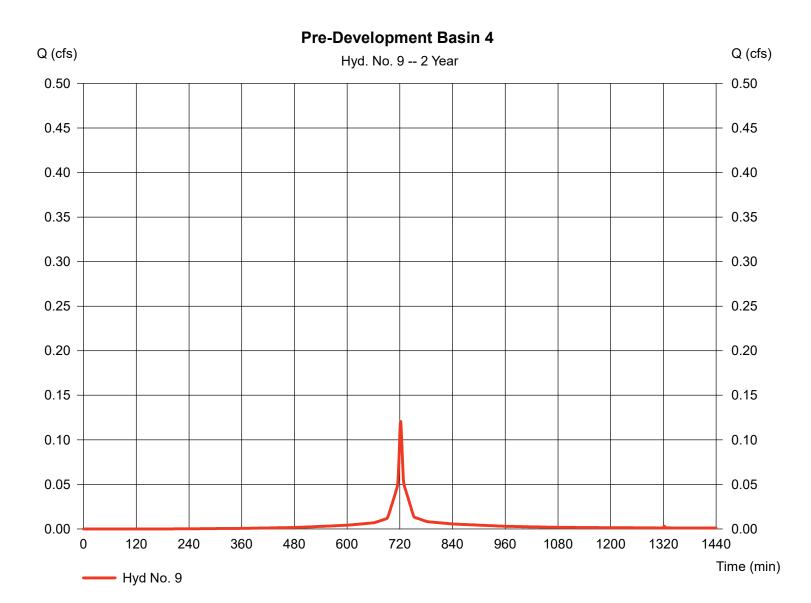

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post-Development Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.104 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 288 cuft
Drainage area	= 0.030 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

* Composite (Area/CN) = [(0.007 x 98) + (0.023 x 85)] / 0.030

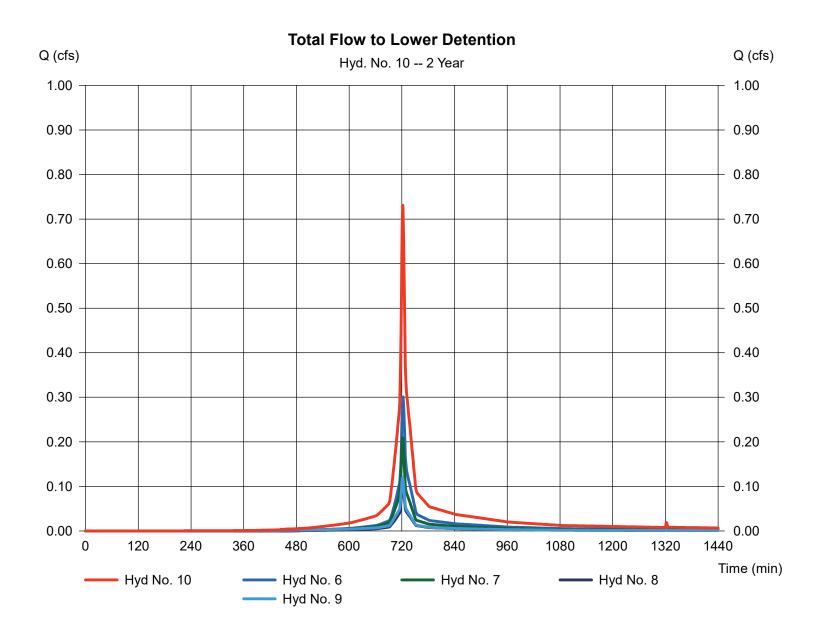

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Pre-Development Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 349 cuft
Drainage area	= 0.030 ac	Curve number	= 94*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.010 x 85)] / 0.030

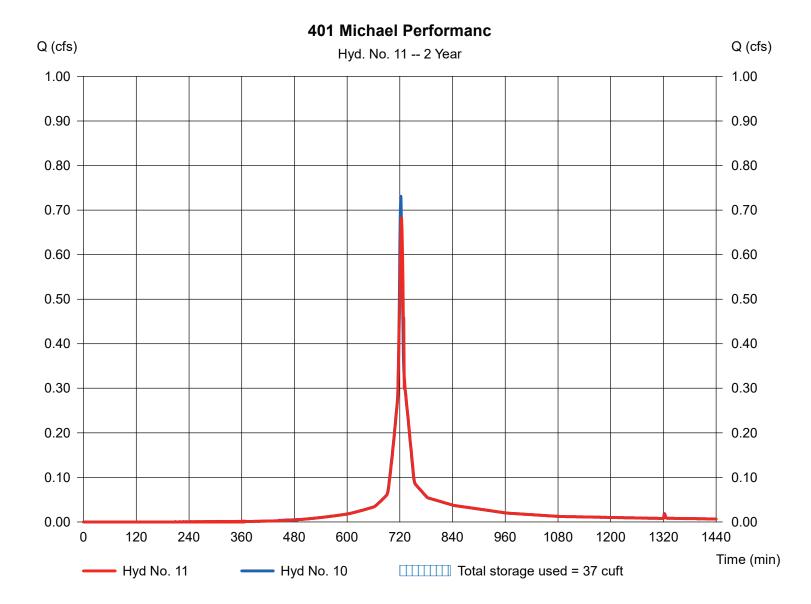

Monday, Dec 6, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Total Flow to Lower Detention

Hydrograph type	= Combine	Peak discharge	= 0.731 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 2,051 cuft
Inflow hyds.	= 6, 7, 8, 9	Contrib. drain. area	a = 0.120 ac


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

401 Michael Performanc

Hydrograph type	= Reservoir	Peak discharge	= 0.683 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 2,051 cuft
Inflow hyd. No.	= 10 - Total Flow to Lower Detention	Max. Elevation	= 75.69 ft
Reservoir name	= 401 Michael Detention	Max. Storage	= 37 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.1

Pond No. 1 - 401 Michael Detention

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 75.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	75.00	20	0	0	
1.00	76.00	88	54	54	
2.00	77.00	196	142	196	
3.00	78.00	322	259	455	

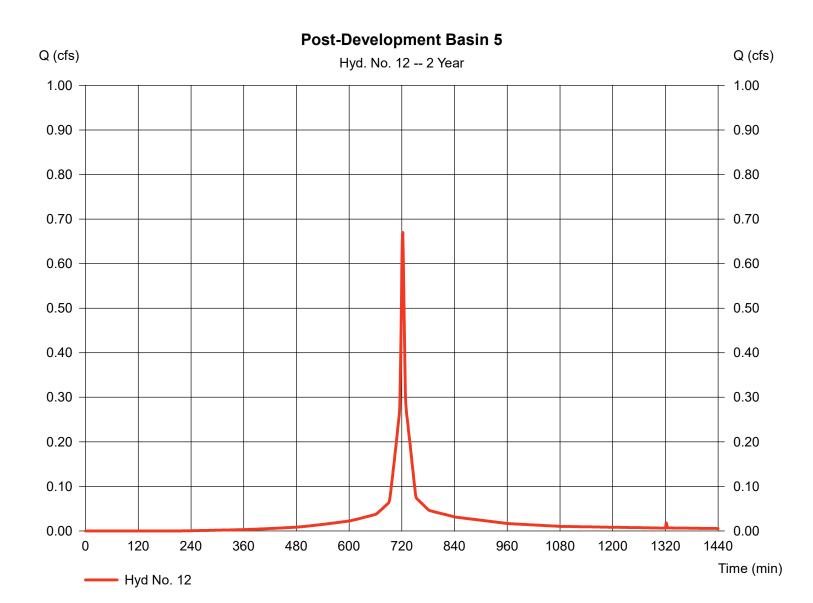
Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 8.00	Inactive	0.00	Inactive	Crest Len (ft)	= 1.57	0.00	0.00	0.00
Span (in)	= 8.00	0.00	0.00	0.00	Crest El. (ft)	= 75.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	1	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 72.00	0.00	0.00	0.00	Weir Type	= Riser			
Length (ft)	= 100.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 10.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00	0	75.00	0.00				0.00						0.00
1.00	54	76.00	2.74 ic				0.83 ic						0.83
2.00	196	77.00	2.74 ic				1.17 ic						1.17
3.00	455	78.00	2.74 ic				1.43 ic						1.43

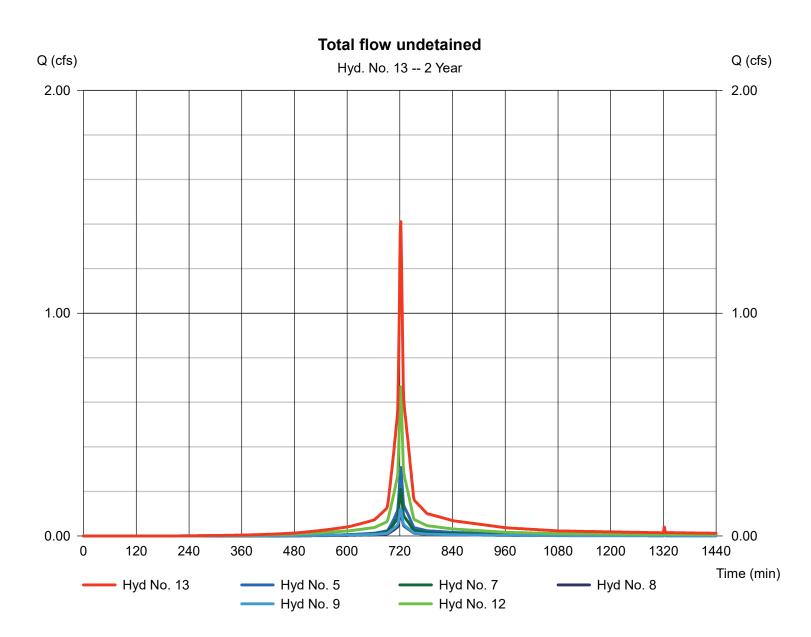

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Post-Development Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 0.670 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,919 cuft
Drainage area	= 0.170 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.90 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		•	

* Composite (Area/CN) = [(0.100 x 98) + (0.020 x 85) + (0.050 x 86)] / 0.170

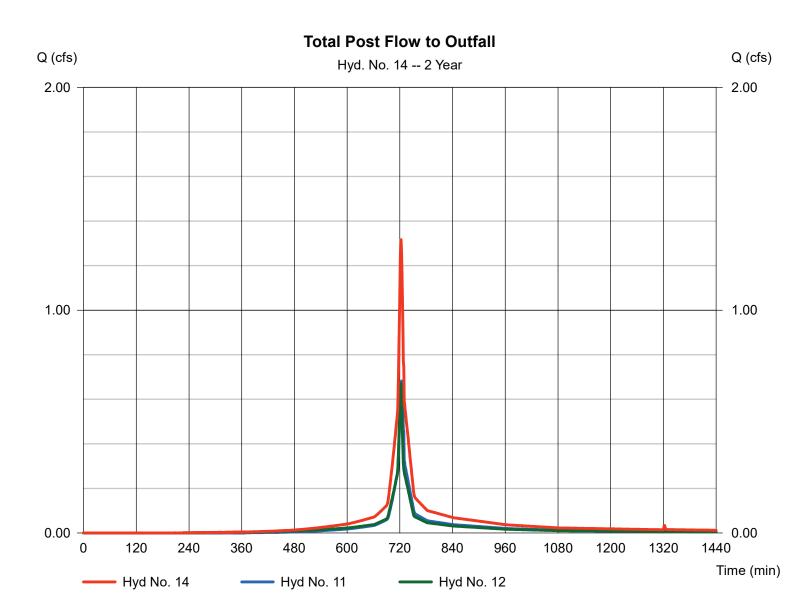

15

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Total flow undetained

Hydrograph type	= Combine	Peak discharge	= 1.411 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 3,970 cuft
Inflow hyds.	= 5, 7, 8, 9, 12	Contrib. drain. area	a = 0.390 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 14

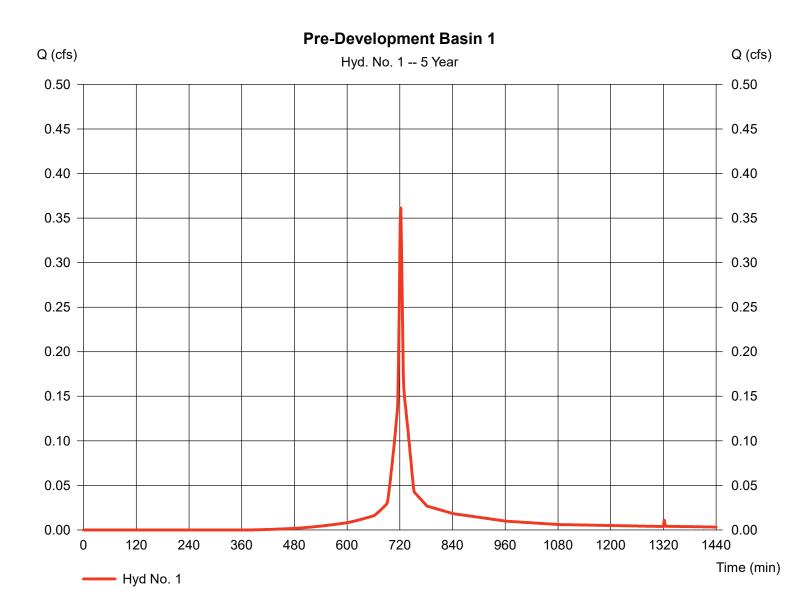
Total Post Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 1.316 cfs
Storm frequency	= 2 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 3,970 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	a = 0.170 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.362	1	722	990				Pre-Development Basin 1
2	SCS Runoff	1.336	1	723	3,954				Pre-Development Basin 2
3	Combine	1.683	1	723	4,945	1, 2			Total Pre-Devlopment Flow to Outfall
5	SCS Runoff	0.402	1	722	1,101				Post-Development Basin 1
6	Reservoir	0.393	1	723	1,100	5	86.18	21.9	Upper Detention
7	SCS Runoff	0.266	1	722	741				Post-Development Basin 2
8	SCS Runoff	0.133	1	722	371				Post-Development Basin 3
9	SCS Runoff	0.148	1	722	436				Pre-Development Basin 4
10	Combine	0.937	1	722	2,648	6, 7, 8, 9			Total Flow to Lower Detention
11	Reservoir	0.844	1	724	2,648	10	76.04	59.4	401 Michael Performanc
12	SCS Runoff	0.829	1	722	2,406				Post-Development Basin 5
13	Combine	1.778	1	722	5,054	5, 7, 8, 9, 1	2		Total flow undetained
14	Combine	1.631	1	722	5,054	11, 12,			Total Post Flow to Outfall
401	MichaelBasir	ns.gpw			Return F	Period: 5 Ye	ar	Monday, D	ec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

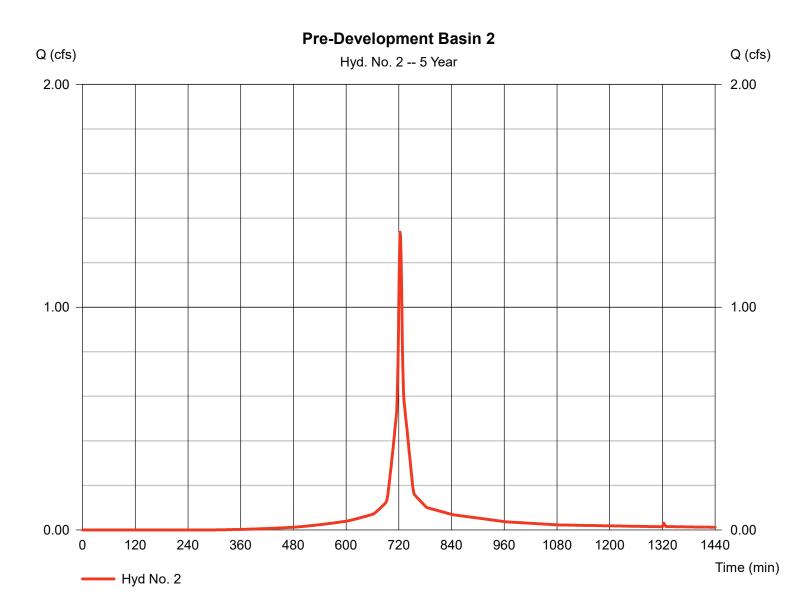
Hyd. No. 1

Pre-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.362 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 990 cuft
Drainage area	= 0.090 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 85) + (0.070 x 84)] / 0.090

Monday, Dec 6, 2021

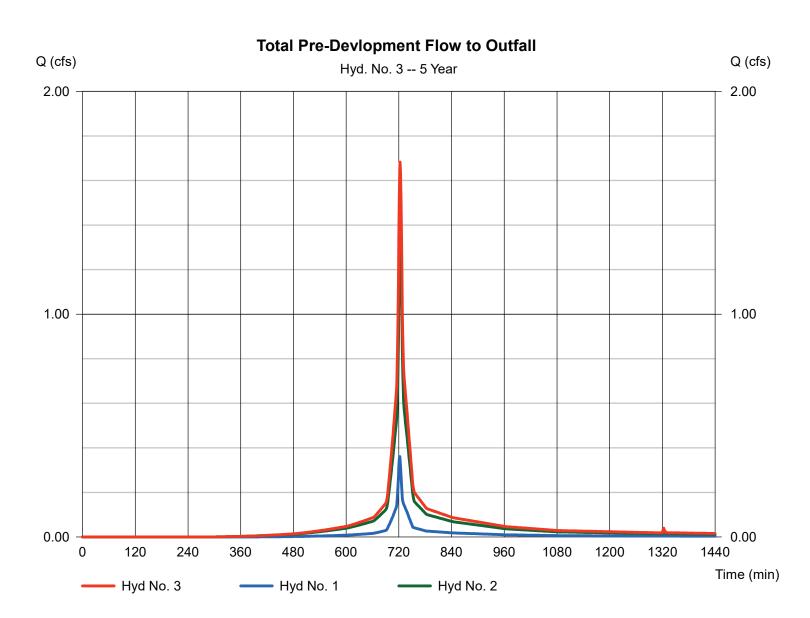

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Pre-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.336 cfs
Storm frequency	= 5 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 3,954 cuft
Drainage area	= 0.300 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 3.70 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.054 x 83) + (0.123 x 86) + (0.057 x 98) + (0.064 x 85)] / 0.300



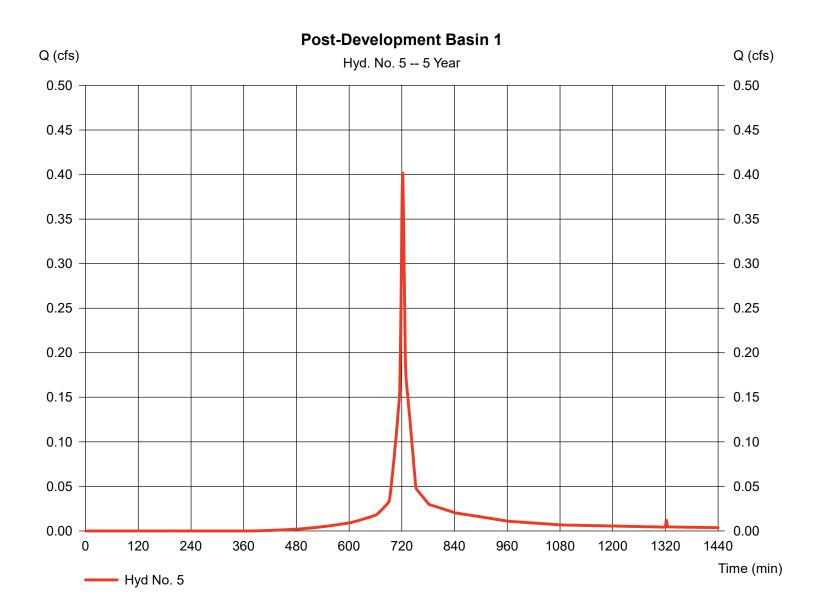
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Total Pre-Devlopment Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 1.683 cfs
Storm frequency	= 5 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 4,945 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	a = 0.390 ac

21

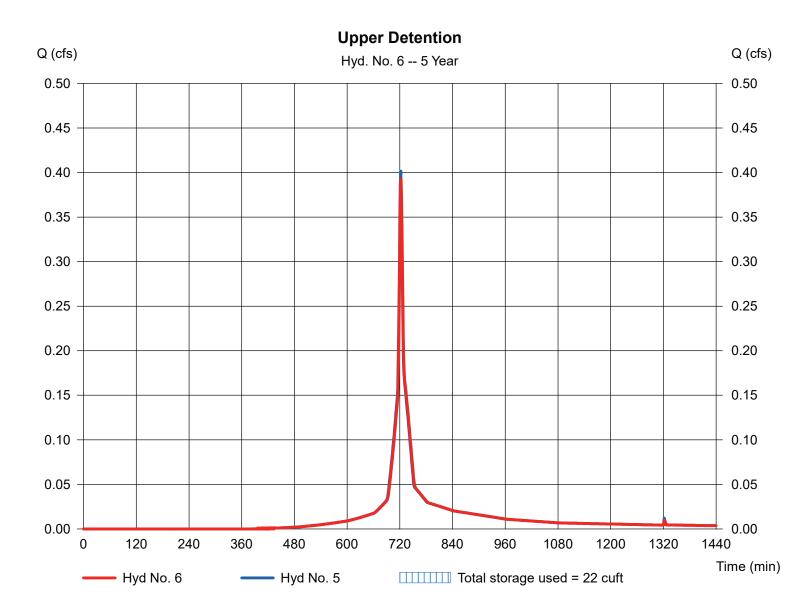

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Post-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.402 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,101 cuft
Drainage area	= 0.100 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.020 x 83) + (0.060 x 80)] / 0.100

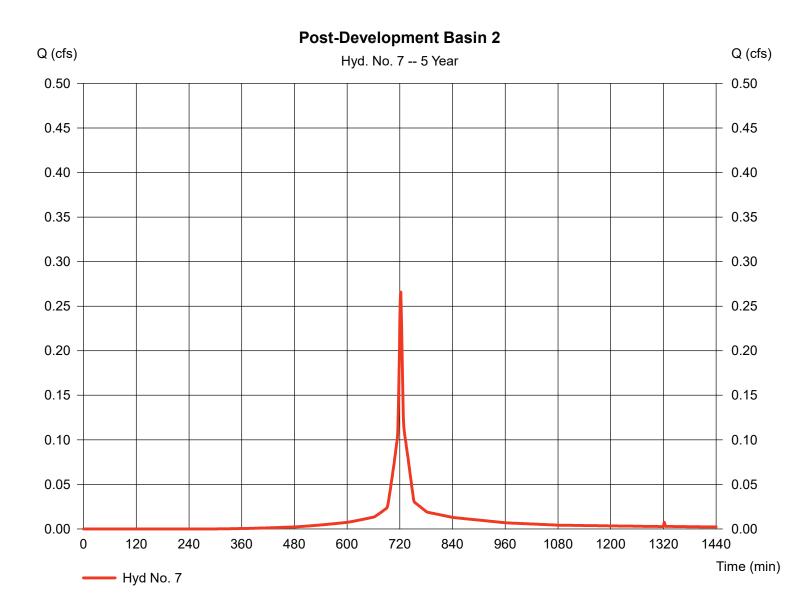

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Upper Detention

= Reservoir	Peak discharge	= 0.393 cfs
= 5 yrs	Time to peak	= 723 min
= 1 min	Hyd. volume	= 1,100 cuft
= 5 - Post-Development Basin 1	Max. Elevation	= 86.18 ft
= 401 Upper Detention	Max. Storage	= 22 cuft
	= 5 yrs = 1 min = 5 - Post-Development Basin 1	= 5 yrsTime to peak= 1 minHyd. volume= 5 - Post-Development Basin 1Max. Elevation

Storage Indication method used.


Hydraflow Hydrographs by Intelisolve v9.1

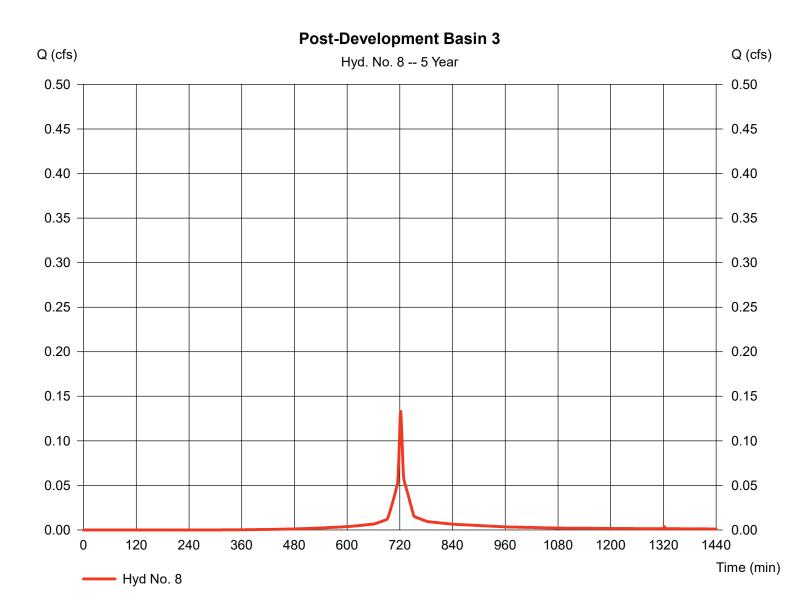
Hyd. No. 7

Post-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.266 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 741 cuft
Drainage area	= 0.060 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.11 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.037 x 83) + (0.020 x 98)] / 0.060

24

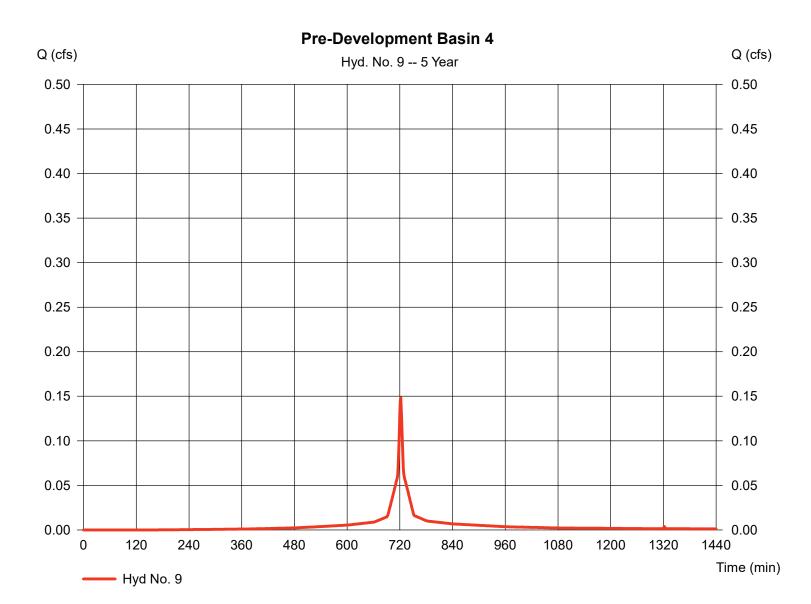

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post-Development Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.133 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 371 cuft
Drainage area	= 0.030 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.007 x 98) + (0.023 x 85)] / 0.030

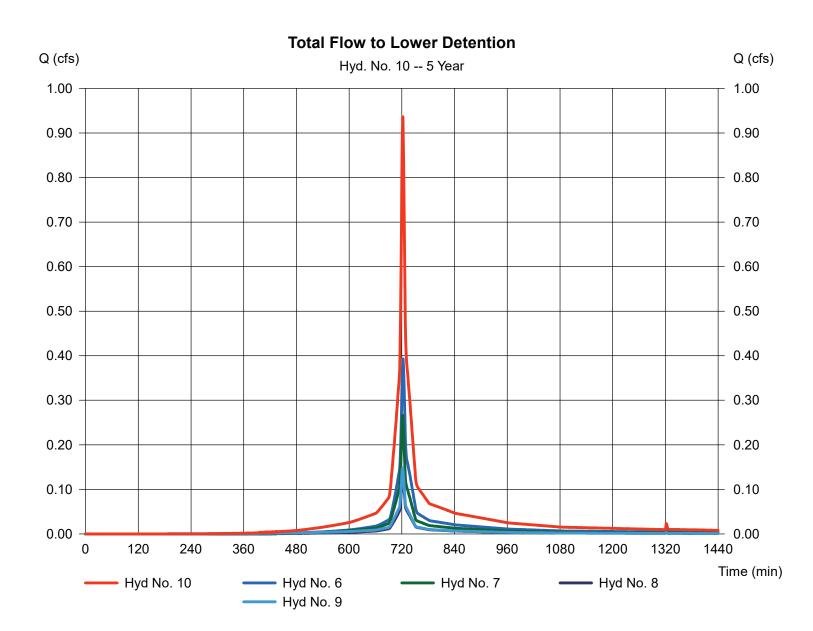

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Pre-Development Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 0.148 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 436 cuft
Drainage area	= 0.030 ac	Curve number	= 94*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
Tc method Total precip.	= 4.96 in	Time of conc. (Tc) Distribution	= Type III

* Composite (Area/CN) = [(0.020 x 98) + (0.010 x 85)] / 0.030

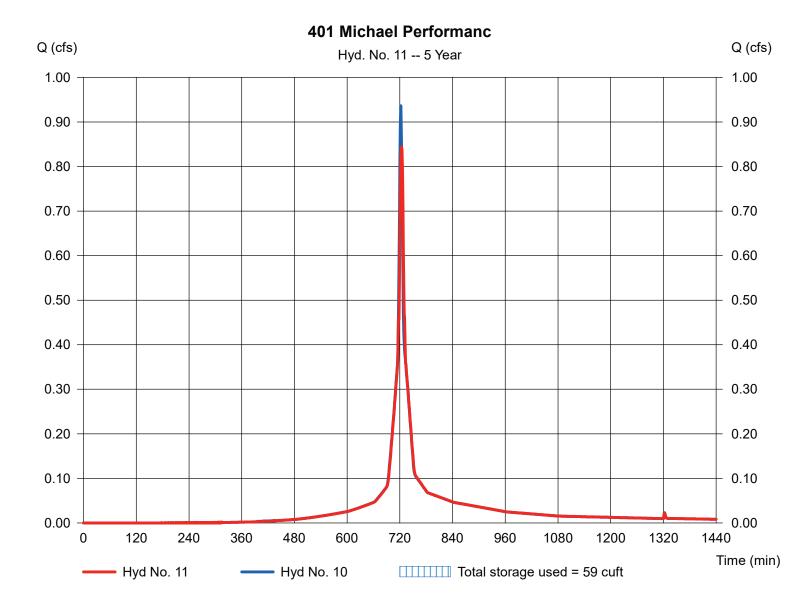

26

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Total Flow to Lower Detention

Hydrograph type	= Combine	Peak discharge	= 0.937 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 2,648 cuft
Inflow hyds.	= 6, 7, 8, 9	Contrib. drain. area	a = 0.120 ac


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

401 Michael Performanc

Hydrograph type	= Reservoir	Peak discharge	= 0.844 cfs
Storm frequency	= 5 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 2,648 cuft
Inflow hyd. No.	= 10 - Total Flow to Lower Detention	Max. Elevation	= 76.04 ft
Reservoir name	= 401 Michael Detention	Max. Storage	= 59 cuft

Storage Indication method used.

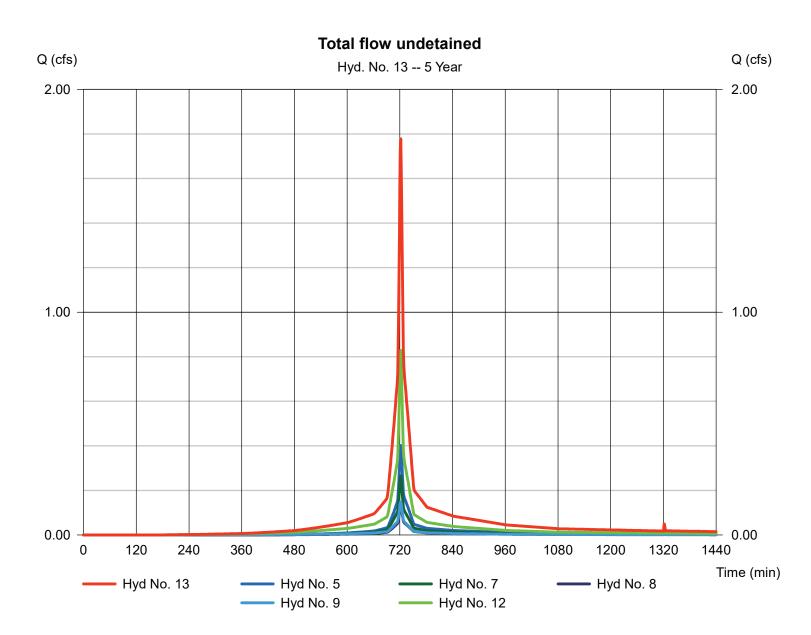

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Post-Development Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 0.829 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 2,406 cuft
Drainage area	= 0.170 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.90 min
Total precip.	= 4.96 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		•	

* Composite (Area/CN) = [(0.100 x 98) + (0.020 x 85) + (0.050 x 86)] / 0.170

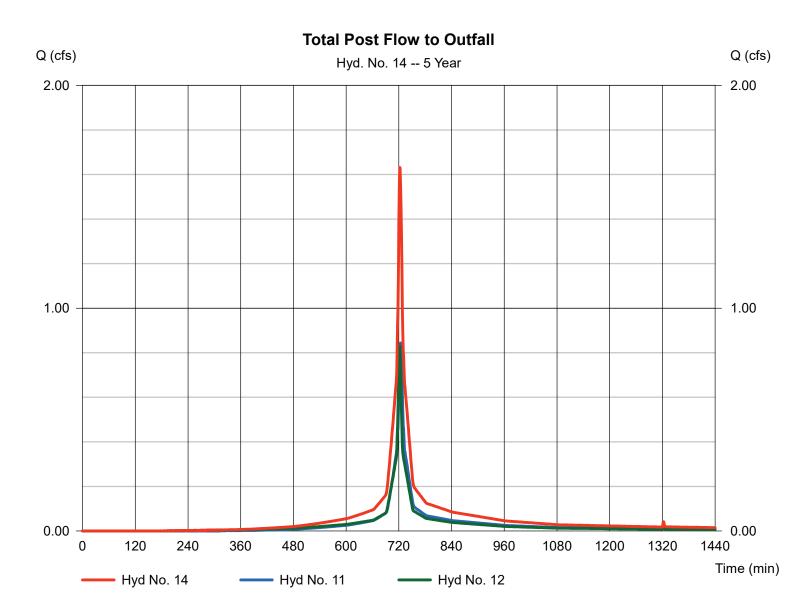

Monday, Dec 6, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Total flow undetained

Hydrograph type	= Combine	Peak discharge	= 1.778 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 5,054 cuft
Inflow hyds.	= 5, 7, 8, 9, 12	Contrib. drain. area	a = 0.390 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 14

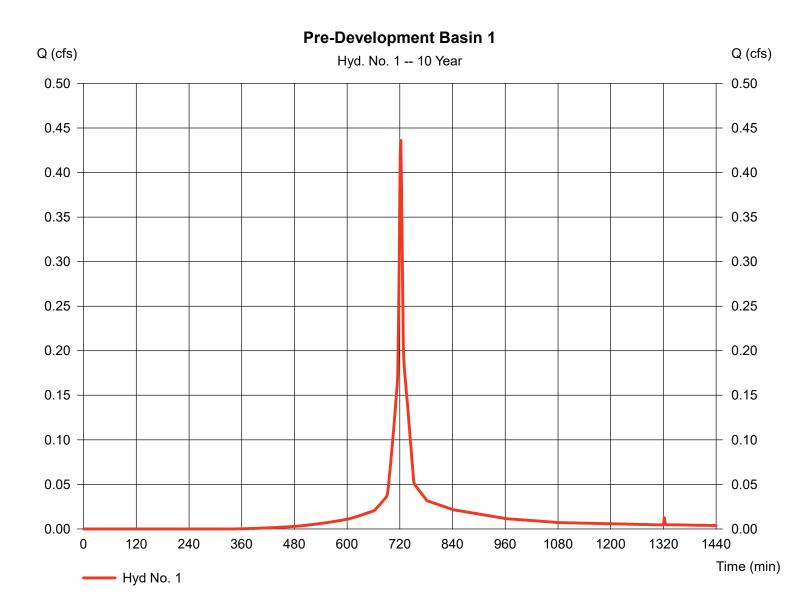
Total Post Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 1.631 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 5,054 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	a = 0.170 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.436	1	722	1,202				Pre-Development Basin 1
2	SCS Runoff	1.586	1	723	4,734				Pre-Development Basin 2
3	Combine	2.004	1	723	5,936	1, 2			Total Pre-Devlopment Flow to Outfall
5	SCS Runoff	0.484	1	722	1,336				Post-Development Basin 1
6	Reservoir	0.467	1	722	1,336	5	86.21	25.6	Upper Detention
7	SCS Runoff	0.316	1	722	888				Post-Development Basin 2
8	SCS Runoff	0.158	1	722	444				Post-Development Basin 3
9	SCS Runoff	0.173	1	722	511				Pre-Development Basin 4
10	Combine	1.113	1	722	3,179	6, 7, 8, 9			Total Flow to Lower Detention
11	Reservoir	0.933	1	725	3,179	10	76.28	92.2	401 Michael Performanc
12	SCS Runoff	0.967	1	722	2,833				Post-Development Basin 5
13	Combine	2.097	1	722	6,012	5, 7, 8, 9, 1	2		Total flow undetained
14	Combine	1.844	1	722	6,012	11, 12,			Total Post Flow to Outfall
101	MichaelBasir	IS.QDW			Return F	Period: 10 Y	ear	Monday, D	ec 6. 2021


Hydraflow Hydrographs by Intelisolve v9.1

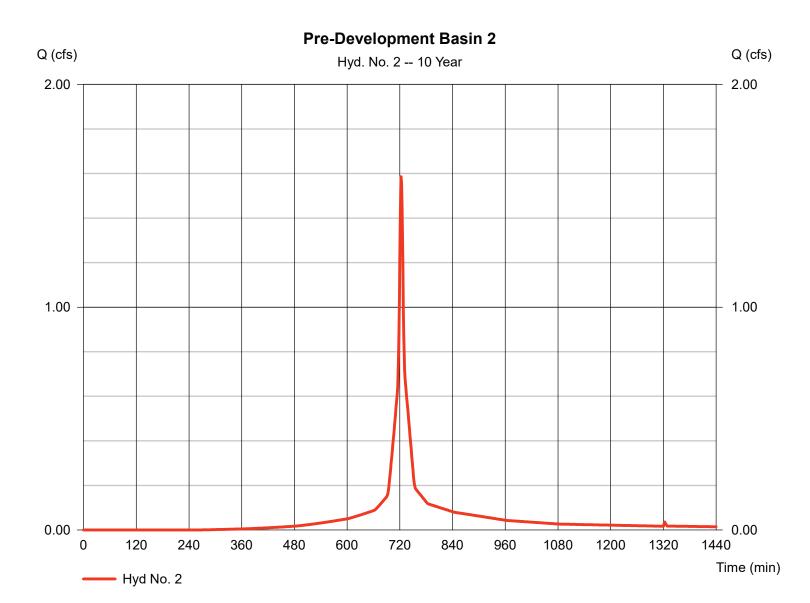
Hyd. No. 1

Pre-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.436 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,202 cuft
Drainage area	= 0.090 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 85) + (0.070 x 84)] / 0.090

Monday, Dec 6, 2021

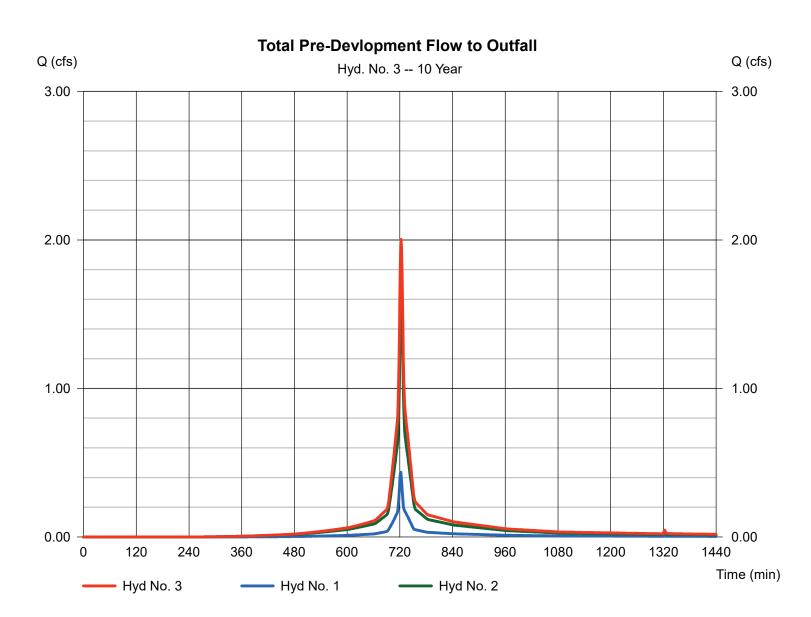

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Pre-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.586 cfs
Storm frequency	= 10 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 4,734 cuft
Drainage area	= 0.300 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 3.70 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.054 x 83) + (0.123 x 86) + (0.057 x 98) + (0.064 x 85)] / 0.300



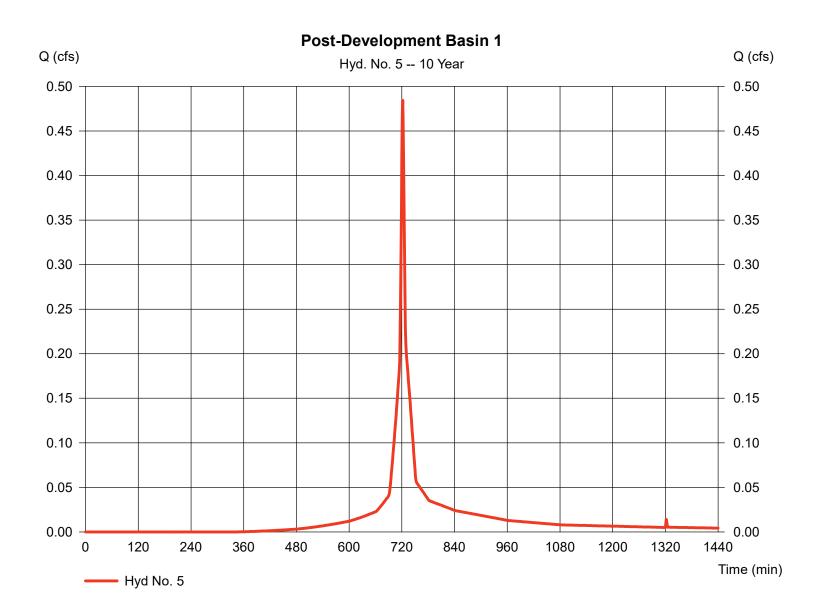
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Total Pre-Devlopment Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 2.004 cfs
Storm frequency	= 10 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 5,936 cuft
	= 1.2	Contrib. drain. area	= 0.390 ac
innew nyde.	1, <i>L</i>		0.000 40

35


Hydraflow Hydrographs by Intelisolve v9.1

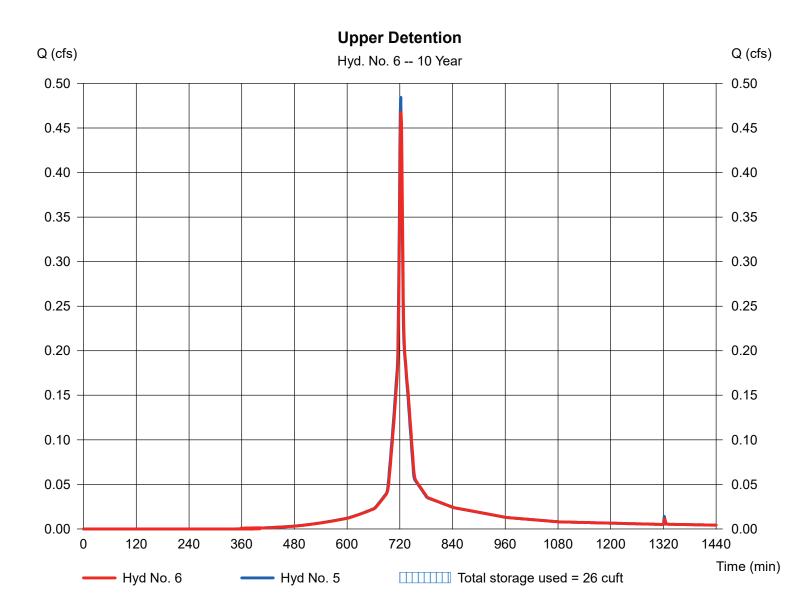
Hyd. No. 5

Post-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.484 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,336 cuft
Drainage area	= 0.100 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.020 x 83) + (0.060 x 80)] / 0.100

36

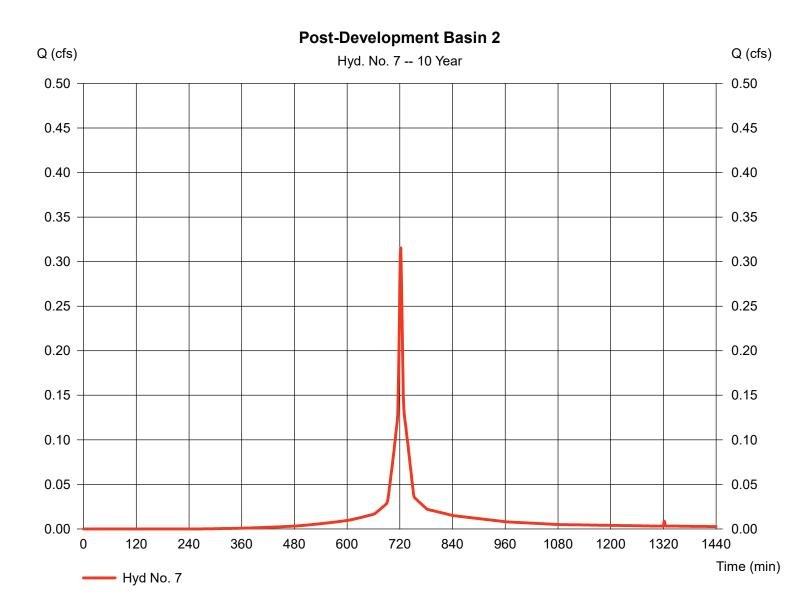

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Upper Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.467 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,336 cuft
Inflow hyd. No.	= 5 - Post-Development Basin 1	Max. Elevation	= 86.21 ft
Reservoir name	= 401 Upper Detention	Max. Storage	= 26 cuft

Storage Indication method used.

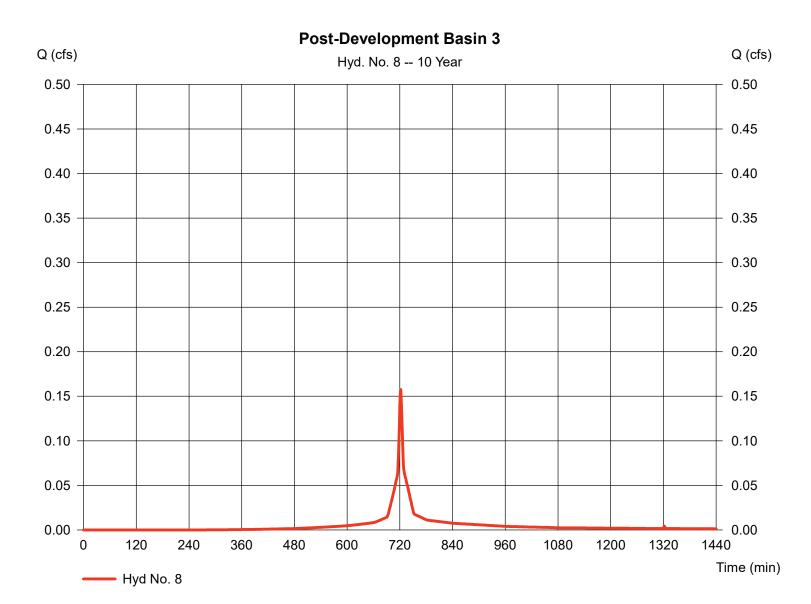

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 7

Post-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.316 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 888 cuft
Drainage area	= 0.060 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.11 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.037 x 83) + (0.020 x 98)] / 0.060


Hydraflow Hydrographs by Intelisolve v9.1

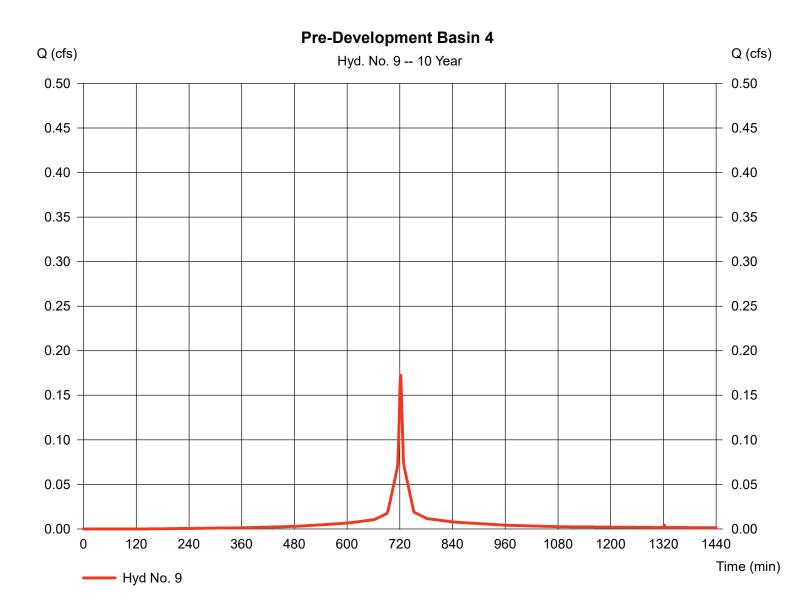
Hyd. No. 8

Post-Development Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.158 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 444 cuft
Drainage area	= 0.030 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.007 x 98) + (0.023 x 85)] / 0.030

39

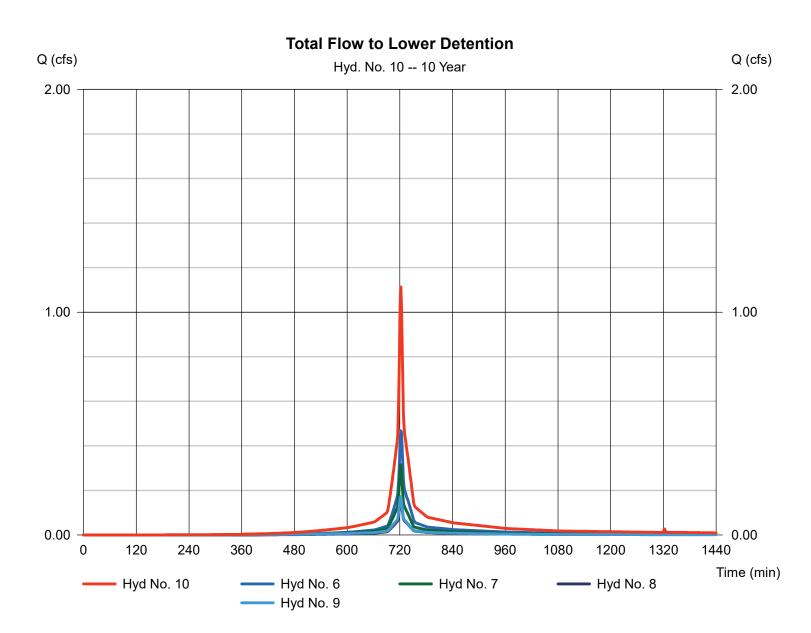

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Pre-Development Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 0.173 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 511 cuft
Drainage area	= 0.030 ac	Curve number	= 94*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.010 x 85)] / 0.030

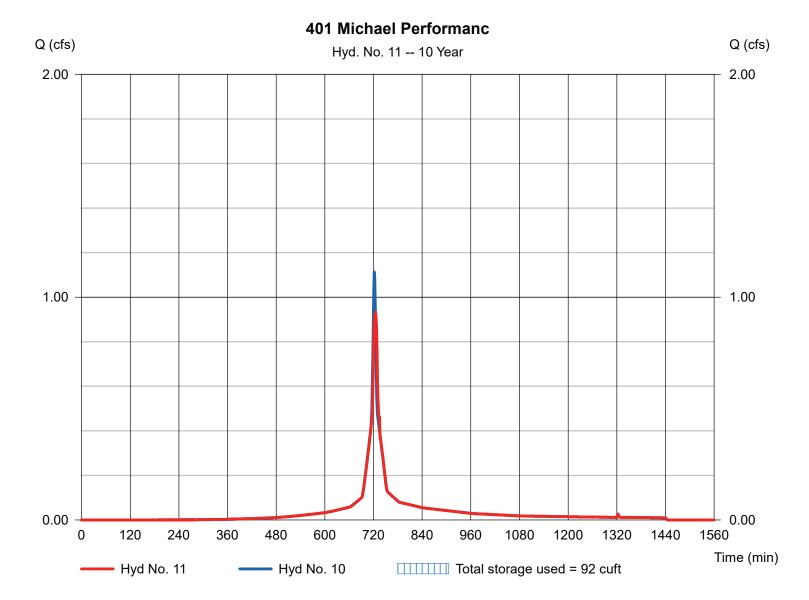


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Total Flow to Lower Detention

Hydrograph type	= Combine	Peak discharge	= 1.113 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 3,179 cuft
Inflow hyds.	= 6, 7, 8, 9	Contrib. drain. area	a = 0.120 ac

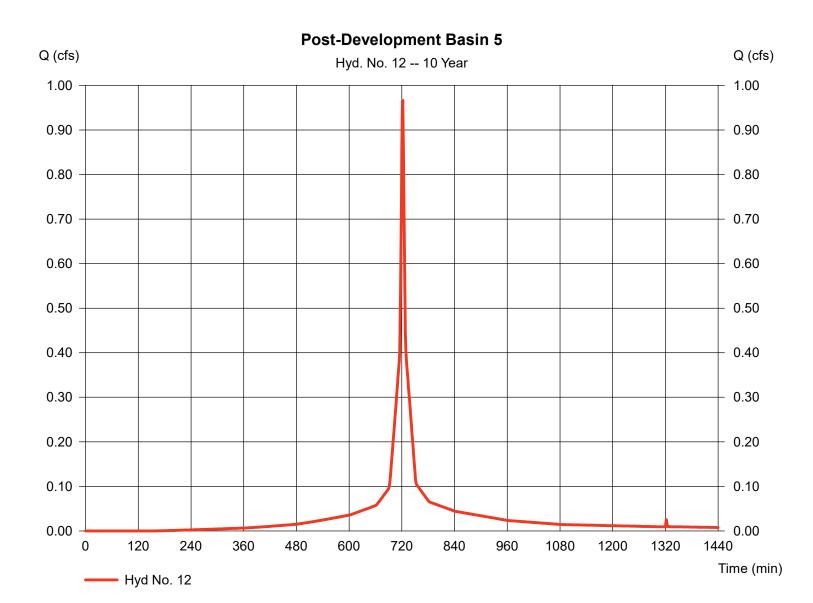

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

401 Michael Performanc

Hydrograph type	= Reservoir	Peak discharge	= 0.933 cfs
Storm frequency	= 10 yrs	Time to peak	= 725 min
Time interval	= 1 min	Hyd. volume	= 3,179 cuft
Inflow hyd. No.	= 10 - Total Flow to Lower Detention	Max. Elevation	= 76.28 ft
Reservoir name	= 401 Michael Detention	Max. Storage	= 92 cuft

Storage Indication method used.

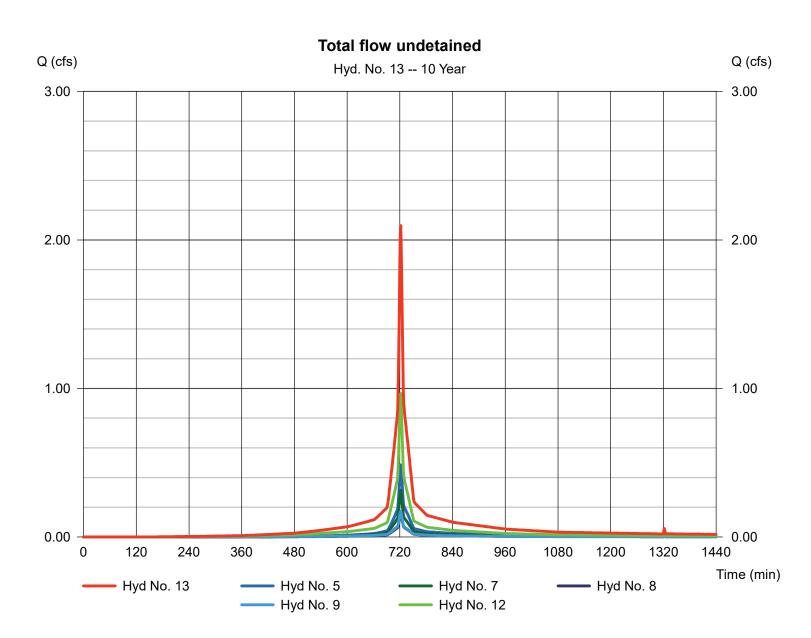

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Post-Development Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 0.967 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 2,833 cuft
Drainage area	= 0.170 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.90 min
Total precip.	= 5.71 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		•	

* Composite (Area/CN) = [(0.100 x 98) + (0.020 x 85) + (0.050 x 86)] / 0.170

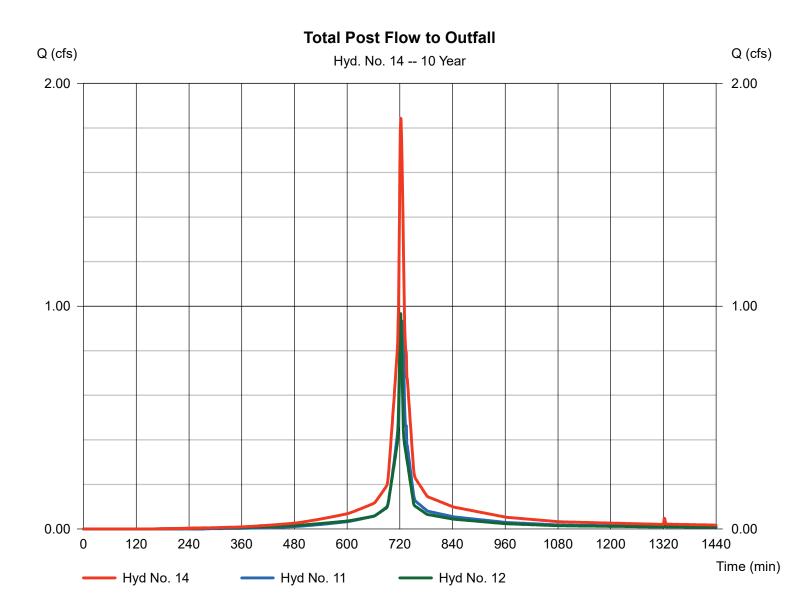

43

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Total flow undetained

Hydrograph type	= Combine	Peak discharge	= 2.097 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 6,012 cuft
Inflow hyds.	= 5, 7, 8, 9, 12	Contrib. drain. area	a = 0.390 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 14

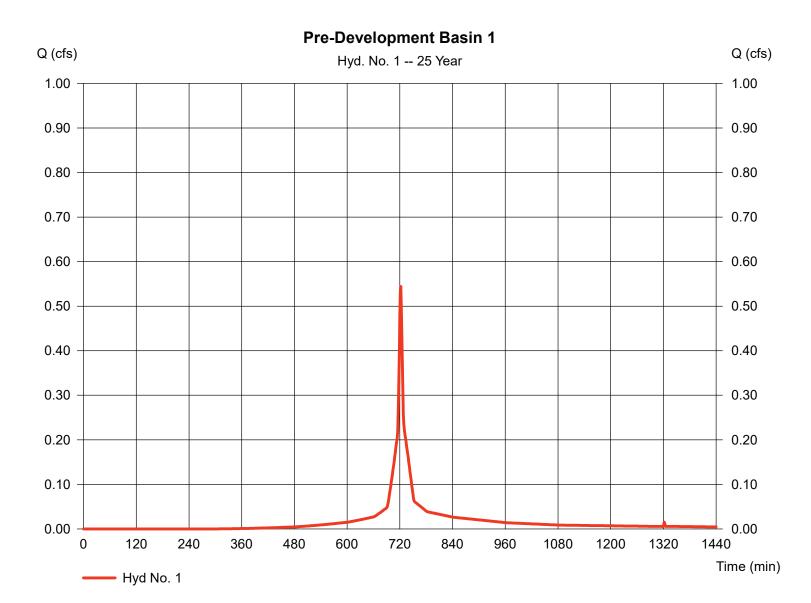
Total Post Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 1.844 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 6,012 cuft
Inflow hyds.	= 11, 12	Contrib. drain. are	a = 0.170 ac

Hydraflow Hydrographs by Intelisolve v9.1

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.544	1	722	1,516				Pre-Development Basin 1
2	SCS Runoff	1.948	1	723	5,880				Pre-Development Basin 2
3	Combine	2.468	1	723	7,396	1, 2			Total Pre-Devlopment Flow to Outfall
5	SCS Runoff	0.605	1	722	1,685				Post-Development Basin 1
6	Reservoir	0.516	1	724	1,685	5	86.39	48.6	Upper Detention
7	SCS Runoff	0.387	1	722	1,102				Post-Development Basin 2
8	SCS Runoff	0.194	1	722	551				Post-Development Basin 3
9	SCS Runoff	0.208	1	722	622				Pre-Development Basin 4
10	Combine	1.254	1	722	3,960	6, 7, 8, 9			Total Flow to Lower Detention
11	Reservoir	1.045	1	725	3,960	10	76.60	138	401 Michael Performanc
12	SCS Runoff	1.166	1	722	3,456				Post-Development Basin 5
13	Combine	2.559	1	722	7,416	5, 7, 8, 9, 1	2		Total flow undetained
14	Combine	2.125	1	722	7,416	11, 12,			Total Post Flow to Outfall
401	MichaelBasir	ns.gpw			Return F	Period: 25 Ye	ear	Monday, Do	ec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

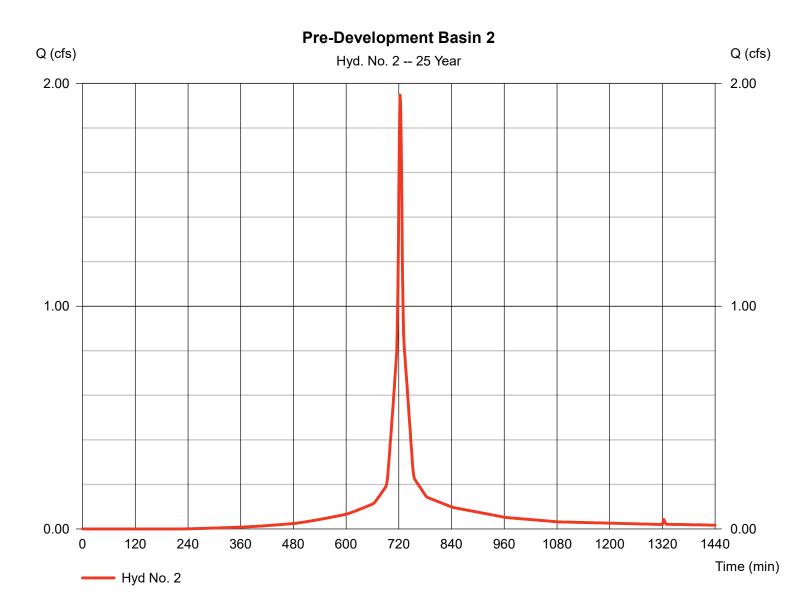
Hyd. No. 1

Pre-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.544 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,516 cuft
Drainage area	= 0.090 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 85) + (0.070 x 84)] / 0.090

Monday, Dec 6, 2021

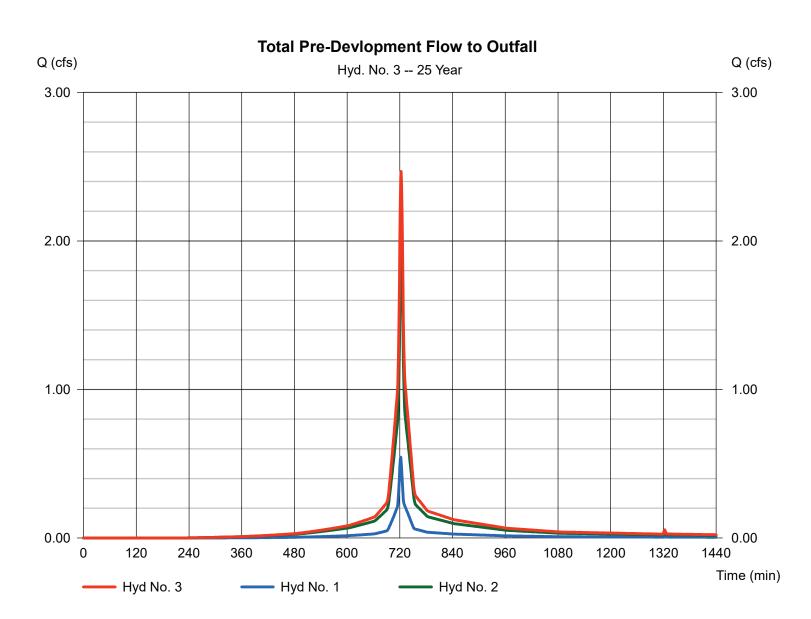

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Pre-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.948 cfs
Storm frequency	= 25 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 5,880 cuft
Drainage area	= 0.300 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 3.70 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.054 x 83) + (0.123 x 86) + (0.057 x 98) + (0.064 x 85)] / 0.300



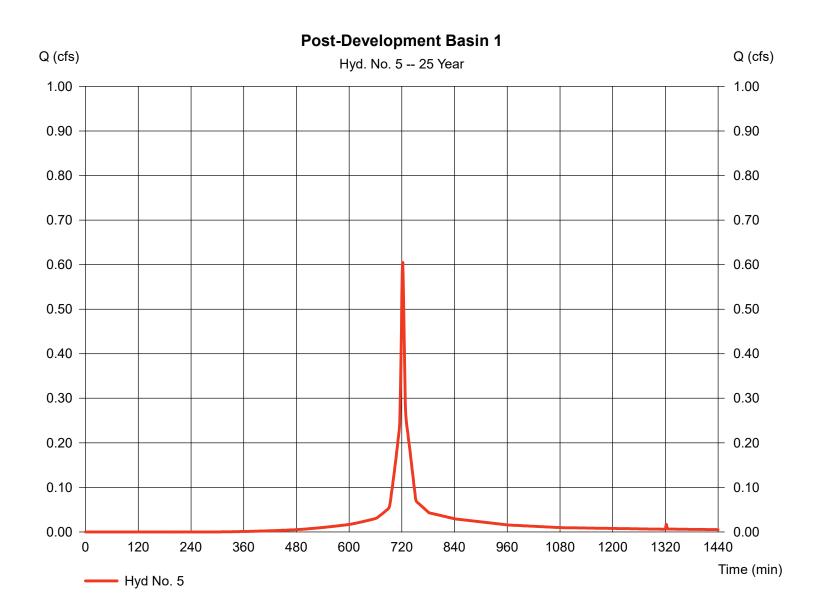
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Total Pre-Devlopment Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 2.468 cfs
Storm frequency	= 25 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 7,396 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	a = 0.390 ac

49


Hydraflow Hydrographs by Intelisolve v9.1

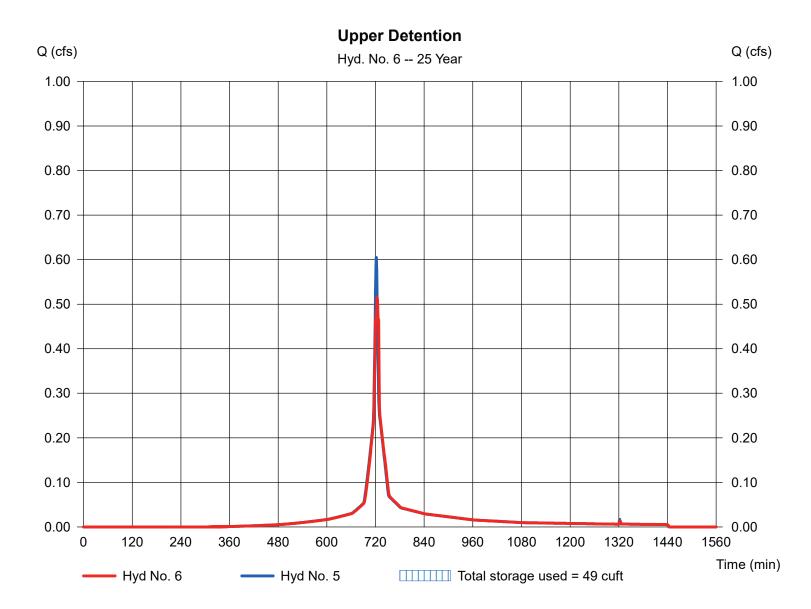
Hyd. No. 5

Post-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.605 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,685 cuft
Drainage area	= 0.100 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.020 x 83) + (0.060 x 80)] / 0.100

Monday, Dec 6, 2021

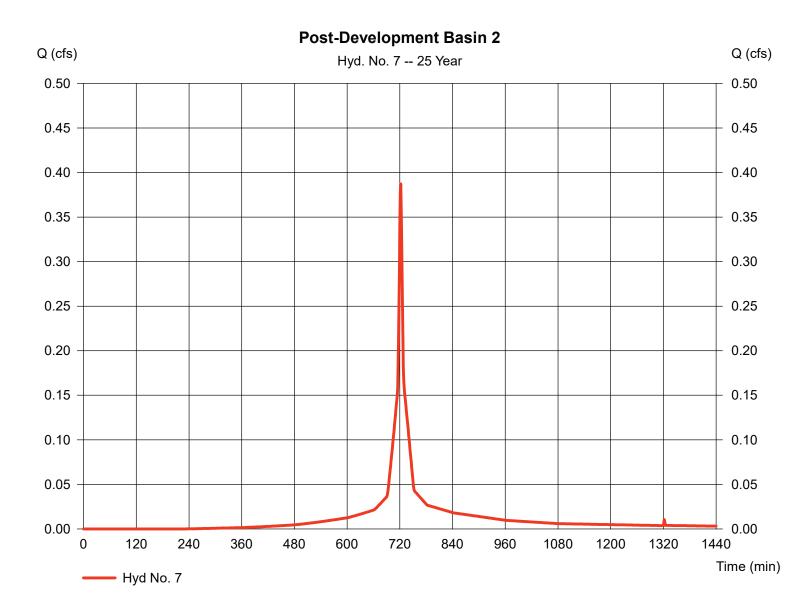

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Upper Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.516 cfs
Storm frequency	= 25 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 1,685 cuft
Inflow hyd. No.	= 5 - Post-Development Basin 1	Max. Elevation	= 86.39 ft
Reservoir name	= 401 Upper Detention	Max. Storage	= 49 cuft

Storage Indication method used.


Hydraflow Hydrographs by Intelisolve v9.1

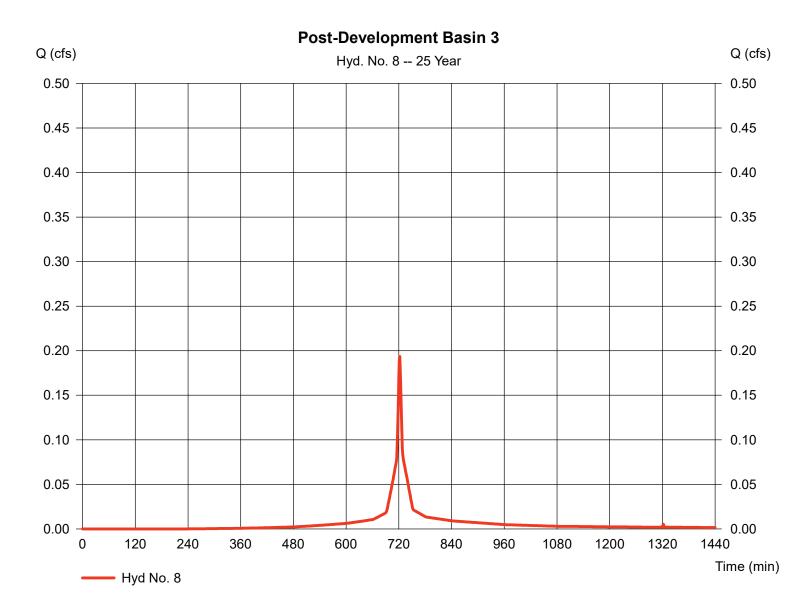
Hyd. No. 7

Post-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.387 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,102 cuft
Drainage area	= 0.060 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.11 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.037 x 83) + (0.020 x 98)] / 0.060

Monday, Dec 6, 2021

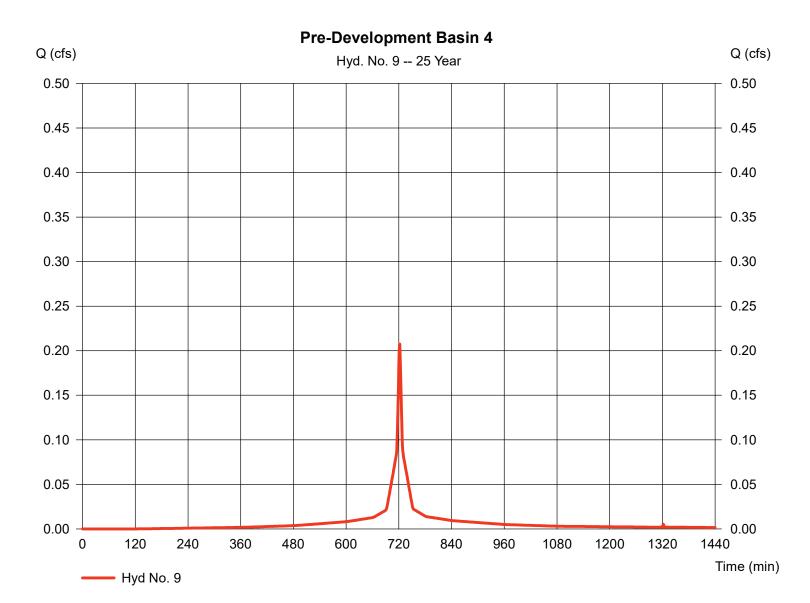

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post-Development Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.194 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 551 cuft
Drainage area	= 0.030 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.007 x 98) + (0.023 x 85)] / 0.030

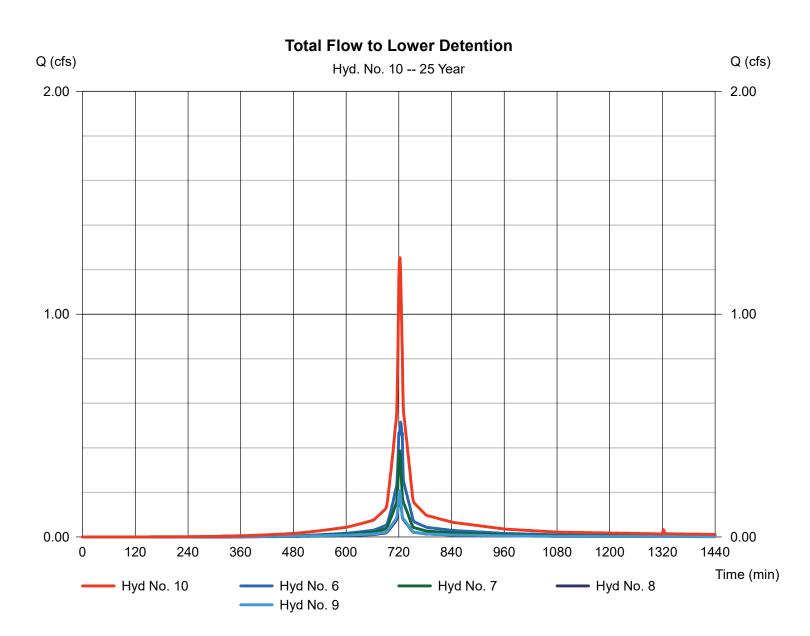

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Pre-Development Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 0.208 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 622 cuft
Drainage area	= 0.030 ac	Curve number	= 94*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.010 x 85)] / 0.030

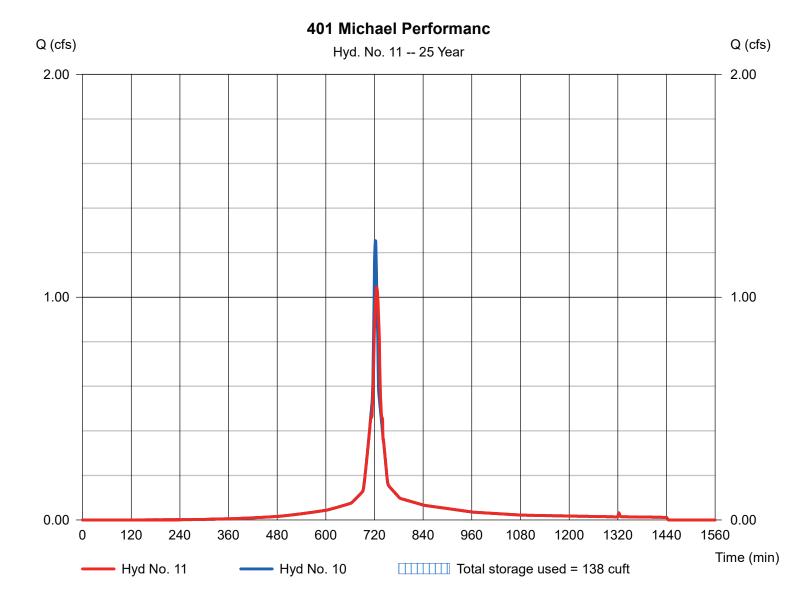

Monday, Dec 6, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Total Flow to Lower Detention

Hydrograph type	= Combine	Peak discharge	= 1.254 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 3,960 cuft
Inflow hyds.	= 6, 7, 8, 9	Contrib. drain. area	a = 0.120 ac

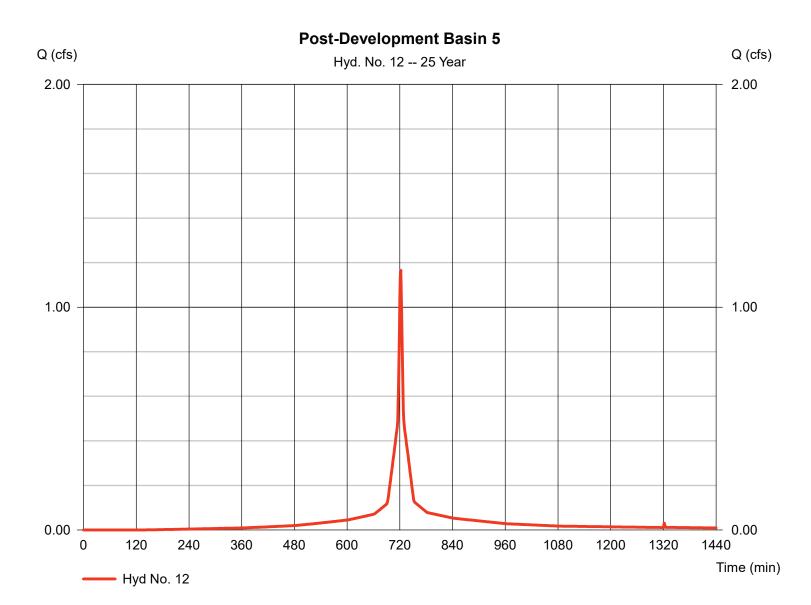

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

401 Michael Performanc

Hydrograph type	= Reservoir	Peak discharge	= 1.045 cfs
Storm frequency	= 25 yrs	Time to peak	= 725 min
Time interval	= 1 min	Hyd. volume	= 3,960 cuft
Inflow hyd. No.	= 10 - Total Flow to Lower Detention	Max. Elevation	= 76.60 ft
Reservoir name	= 401 Michael Detention	Max. Storage	= 138 cuft

Storage Indication method used.

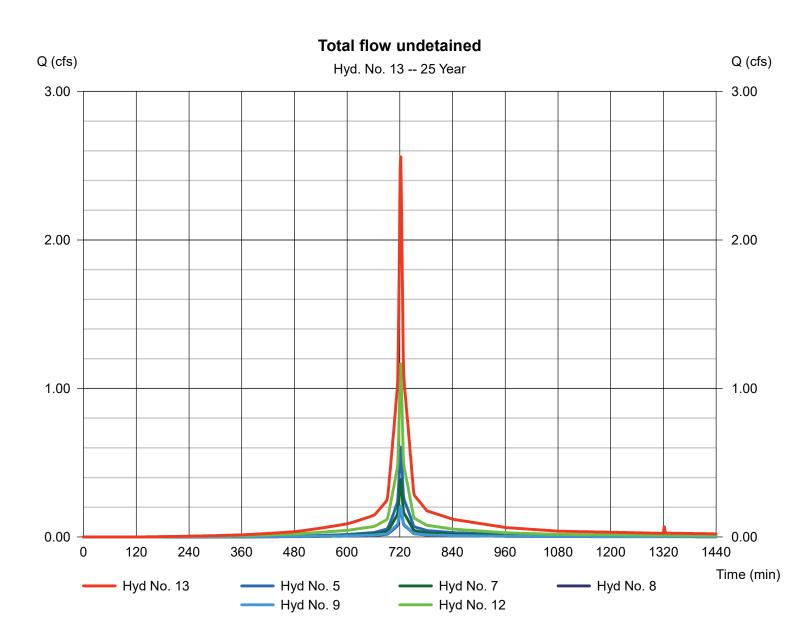

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Post-Development Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 1.166 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 3,456 cuft
Drainage area	= 0.170 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.90 min
Total precip.	= 6.80 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 98) + (0.020 x 85) + (0.050 x 86)] / 0.170

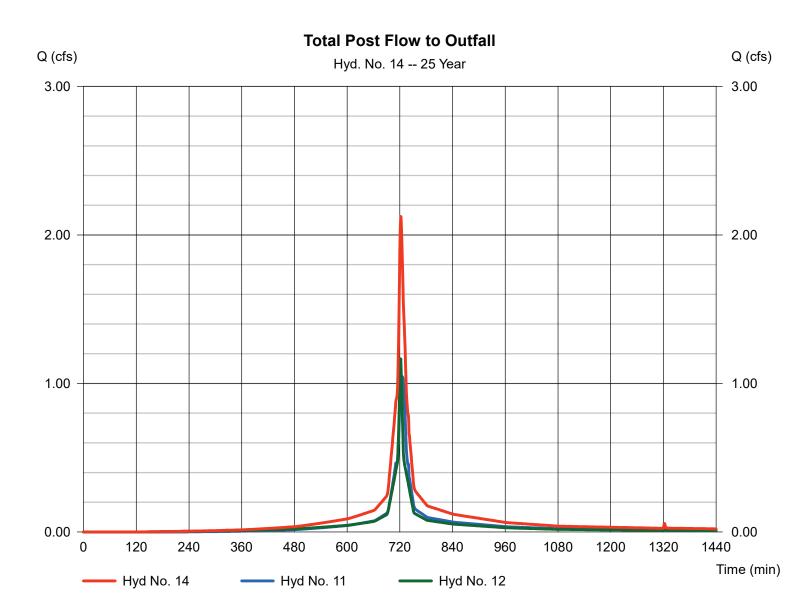


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Total flow undetained

Hydrograph type	= Combine	Peak discharge	= 2.559 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 7,416 cuft
Inflow hyds.	= 5, 7, 8, 9, 12	Contrib. drain. area	a = 0.390 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 14

Total Post Flow to Outfall

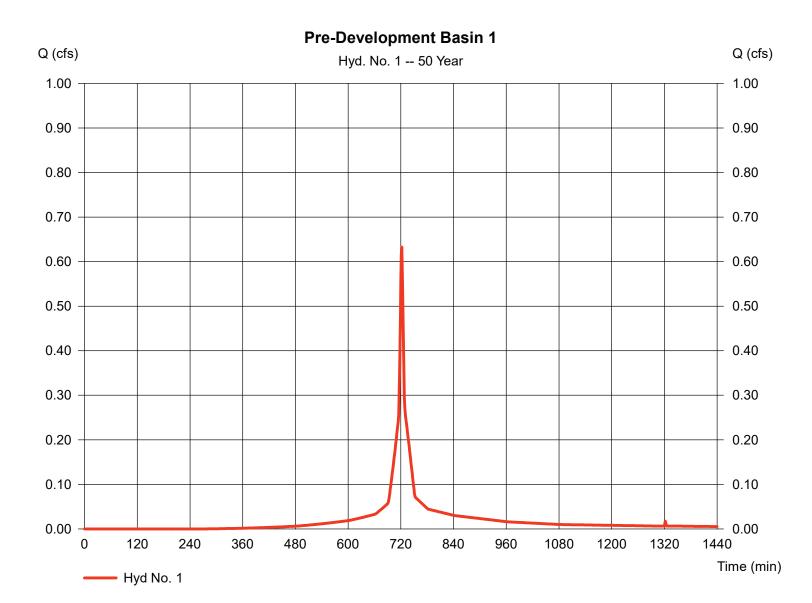
Hydrograph type	= Combine	Peak discharge	= 2.125 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 7,416 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	a = 0.170 ac

59

Hydraflow Hydrographs by Intelisolve v9.1

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.633	1	722	1,776				Pre-Development Basin 1
2	SCS Runoff	2.242	1	723	6,823				Pre-Development Basin 2
3	Combine	2.846	1	723	8,599	1, 2			Total Pre-Devlopment Flow to Outfall
5	SCS Runoff	0.703	1	722	1,973				Post-Development Basin 1
6	Reservoir	0.595	1	724	1,973	5	86.52	64.6	Upper Detention
7	SCS Runoff	0.446	1	722	1,279				Post-Development Basin 2
8	SCS Runoff	0.223	1	722	640				Post-Development Basin 3
9	SCS Runoff	0.236	1	722	712				Pre-Development Basin 4
10	Combine	1.448	1	722	4,604	6, 7, 8, 9			Total Flow to Lower Detention
11	Reservoir	1.153	1	726	4,604	10	76.94	187	401 Michael Performanc
12	SCS Runoff	1.327	1	722	3,966				Post-Development Basin 5
13	Combine	2.935	1	722	8,570	5, 7, 8, 9, 1	2		Total flow undetained
14	Combine	2.356	1	722	8,570	11, 12,			Total Post Flow to Outfall
401	MichaelBasir	ns.gpw			Return F	Period: 50 Ye	ear	Monday, D	ec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

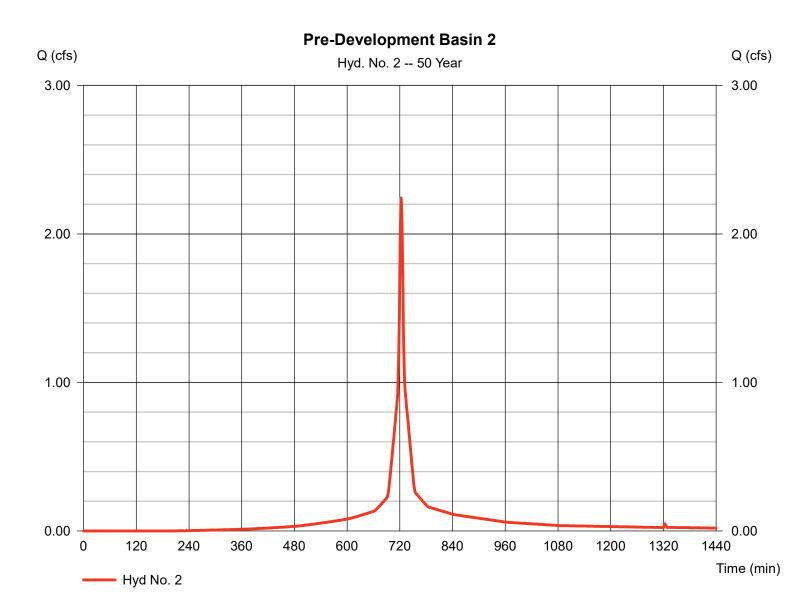
Hyd. No. 1

Pre-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.633 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,776 cuft
Drainage area	= 0.090 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 85) + (0.070 x 84)] / 0.090

Monday, Dec 6, 2021

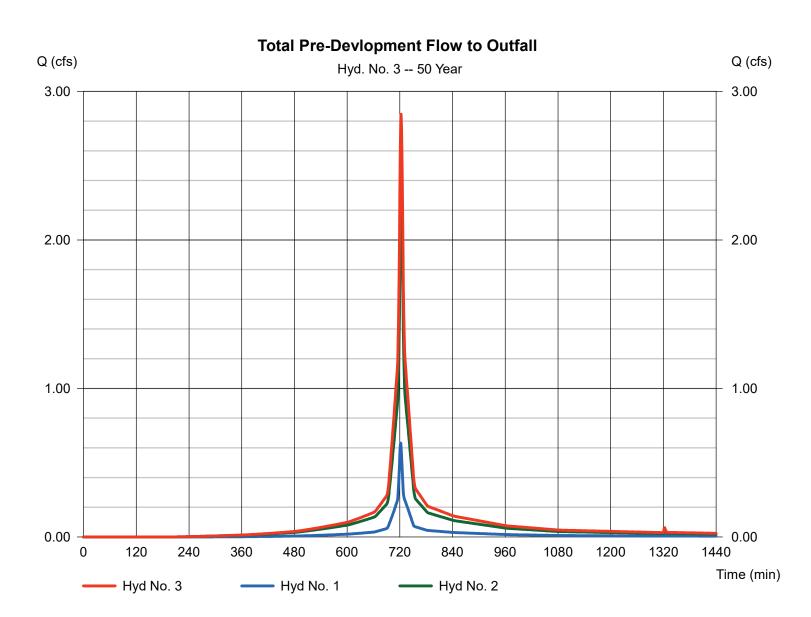

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Pre-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 2.242 cfs
Storm frequency	= 50 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 6,823 cuft
Drainage area	= 0.300 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 3.70 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.054 x 83) + (0.123 x 86) + (0.057 x 98) + (0.064 x 85)] / 0.300



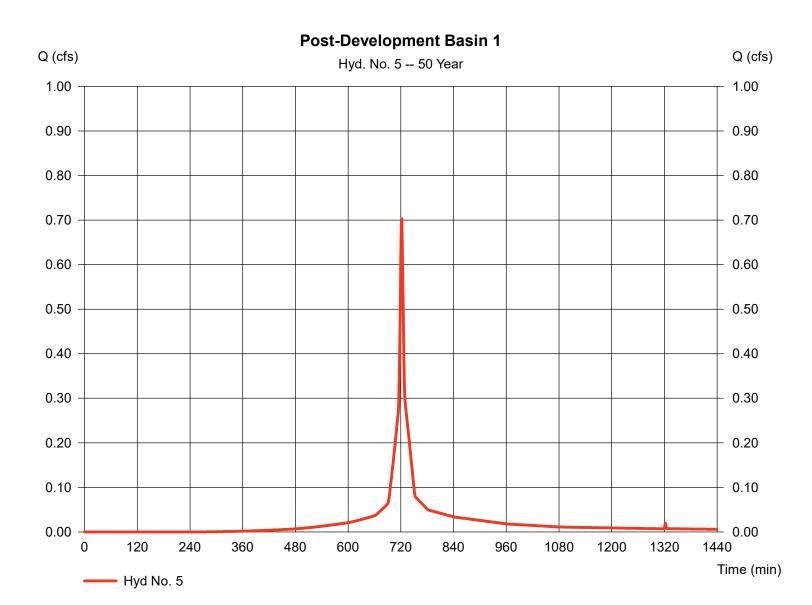
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Total Pre-Devlopment Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 2.846 cfs
Storm frequency	= 50 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 8,599 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	a = 0.390 ac

63


Hydraflow Hydrographs by Intelisolve v9.1

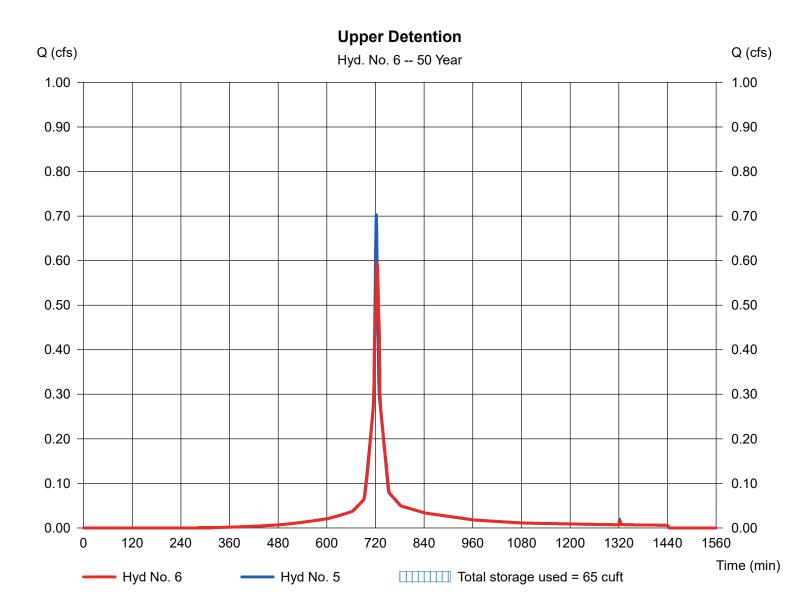
Hyd. No. 5

Post-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.703 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,973 cuft
Drainage area	= 0.100 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.020 x 83) + (0.060 x 80)] / 0.100

64

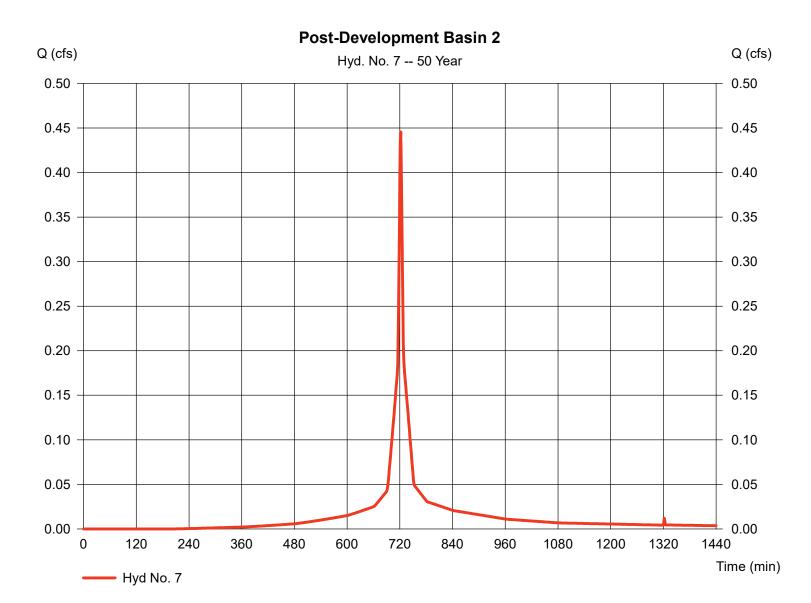

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Upper Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.595 cfs
Storm frequency	= 50 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 1,973 cuft
Inflow hyd. No.	= 5 - Post-Development Basin 1	Max. Elevation	= 86.52 ft
Reservoir name	= 401 Upper Detention	Max. Storage	= 65 cuft

Storage Indication method used.


Hydraflow Hydrographs by Intelisolve v9.1

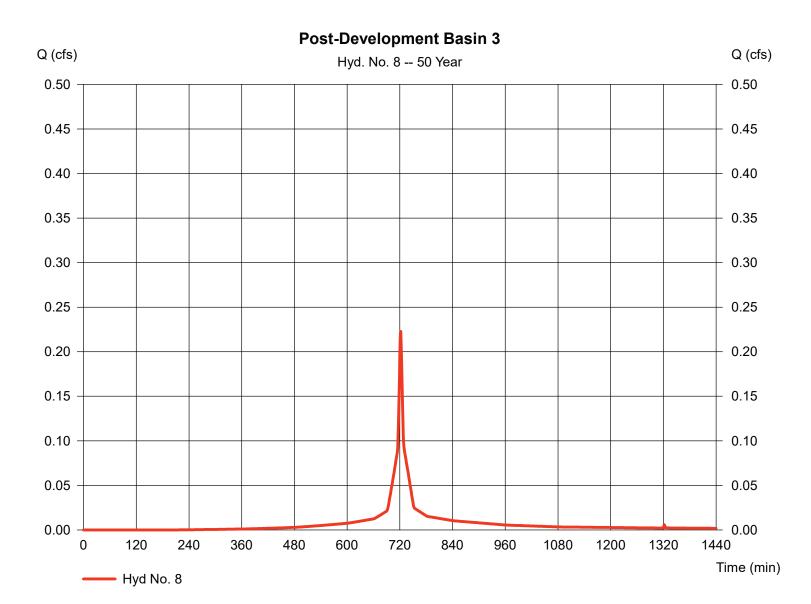
Hyd. No. 7

Post-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.446 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,279 cuft
Drainage area	= 0.060 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.11 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.037 x 83) + (0.020 x 98)] / 0.060

Monday, Dec 6, 2021

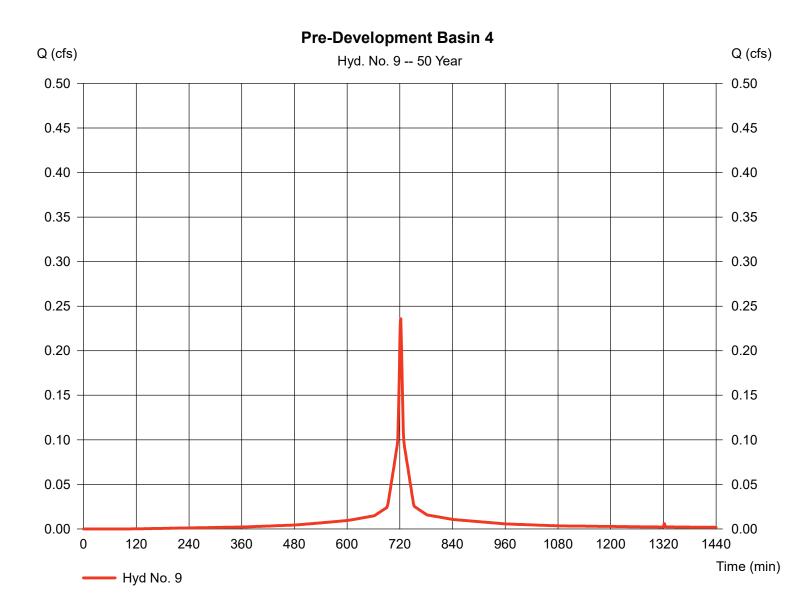

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post-Development Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.223 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 640 cuft
Drainage area	= 0.030 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.007 x 98) + (0.023 x 85)] / 0.030

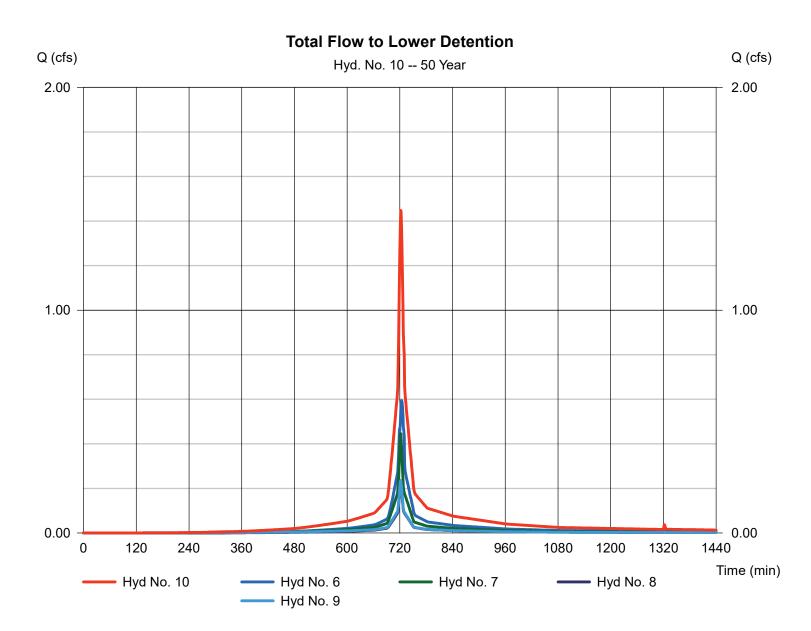

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Pre-Development Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 0.236 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 712 cuft
Drainage area	= 0.030 ac	Curve number	= 94*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.010 x 85)] / 0.030

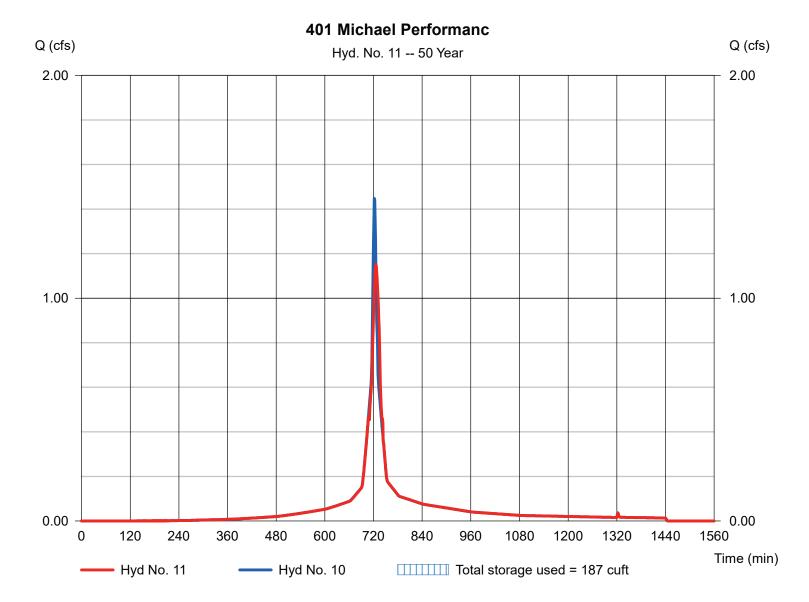


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Total Flow to Lower Detention

Hydrograph type	= Combine	Peak discharge	= 1.448 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 4,604 cuft
Inflow hyds.	= 6, 7, 8, 9	Contrib. drain. area	a = 0.120 ac

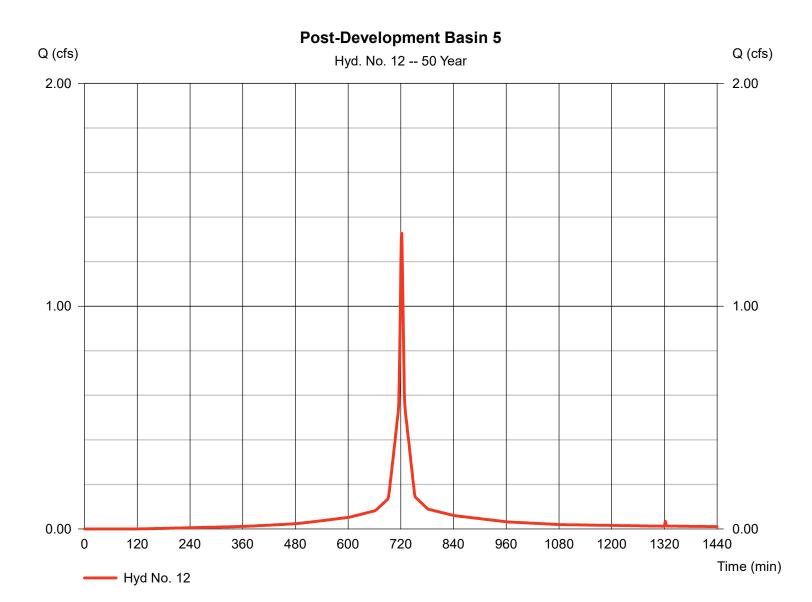

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

401 Michael Performanc

Hydrograph type	= Reservoir	Peak discharge	= 1.153 cfs
Storm frequency	= 50 yrs	Time to peak	= 726 min
Time interval	= 1 min	Hyd. volume	= 4,604 cuft
Inflow hyd. No.	= 10 - Total Flow to Lower Detention	Max. Elevation	= 76.94 ft
Reservoir name	= 401 Michael Detention	Max. Storage	= 187 cuft

Storage Indication method used.

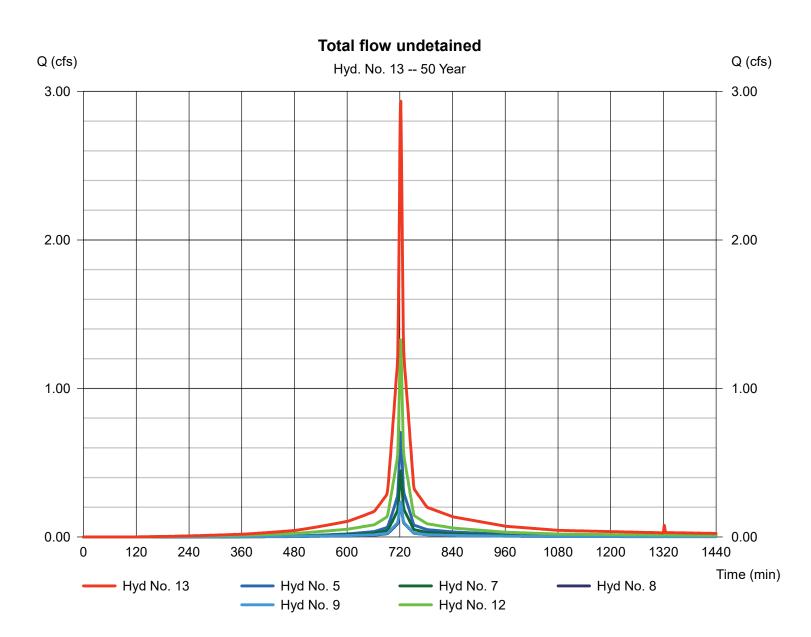

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Post-Development Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 1.327 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 3,966 cuft
Drainage area	= 0.170 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.90 min
Total precip.	= 7.69 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 98) + (0.020 x 85) + (0.050 x 86)] / 0.170

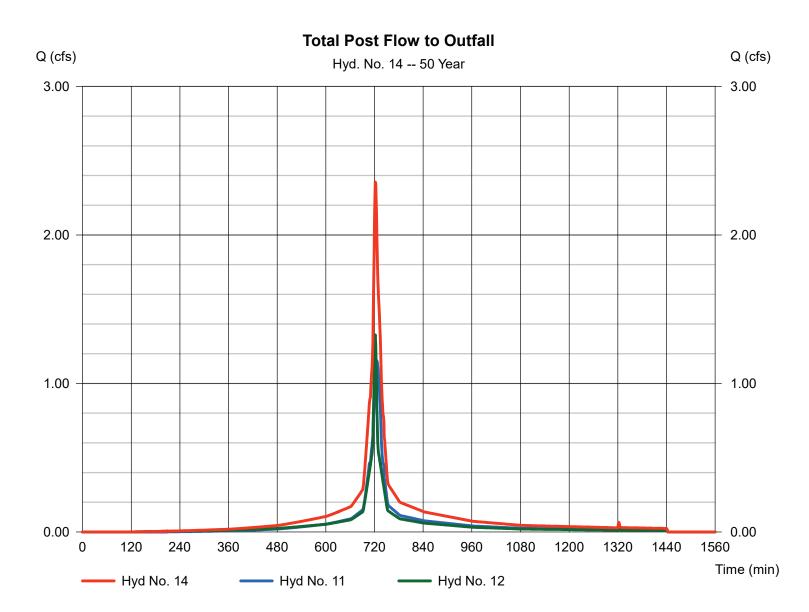

71

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Total flow undetained

Hydrograph type	= Combine	Peak discharge	= 2.935 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 8,570 cuft
Inflow hyds.	= 5, 7, 8, 9, 12	Contrib. drain. area	a = 0.390 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 14

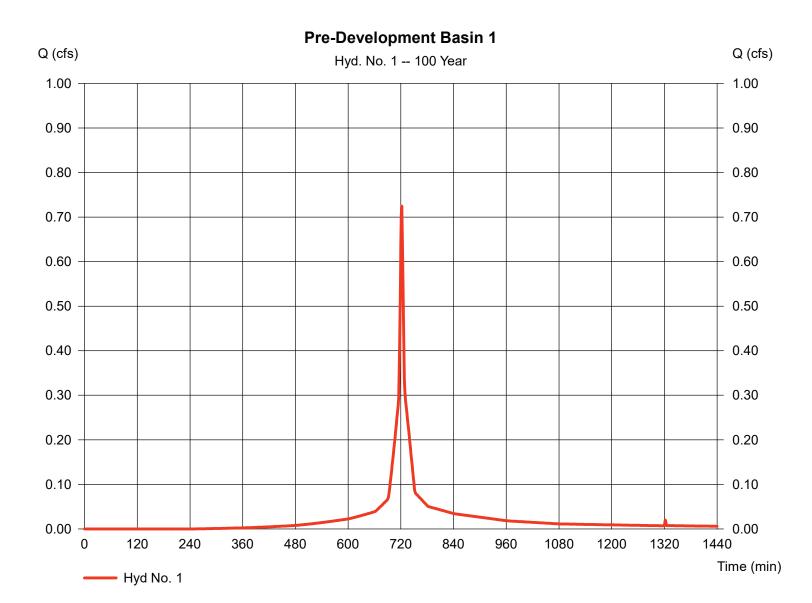
Total Post Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 2.356 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 8,570 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	a = 0.170 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.725	1	722	2,050				Pre-Development Basin 1
2	SCS Runoff	2.548	1	723	7,814				Pre-Development Basin 2
3	Combine	3.239	1	723	9,863	1, 2			Total Pre-Devlopment Flow to Outfall
5	SCS Runoff	0.805	1	722	2,277				Post-Development Basin 1
6	Reservoir	0.671	1	724	2,277	5	86.66	82.1	Upper Detention
7	SCS Runoff	0.506	1	722	1,465				Post-Development Basin 2
8	SCS Runoff	0.253	1	722	733				Post-Development Basin 3
9	SCS Runoff	0.266	1	722	806				Pre-Development Basin 4
10	Combine	1.639	1	722	5,281	6, 7, 8, 9			Total Flow to Lower Detention
11	Reservoir	1.225	1	726	5,281	10	77.20	245	401 Michael Performanc
12	SCS Runoff	1.496	1	722	4,500				Post-Development Basin 5
13	Combine	3.326	1	722	9,781	5, 7, 8, 9, 1	2		Total flow undetained
14	Combine	2.602	1	722	9,781	11, 12,			Total Post Flow to Outfall
101	MichaelBasir	ns.gpw			Return F	Period: 100	Year	Monday, D	ec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

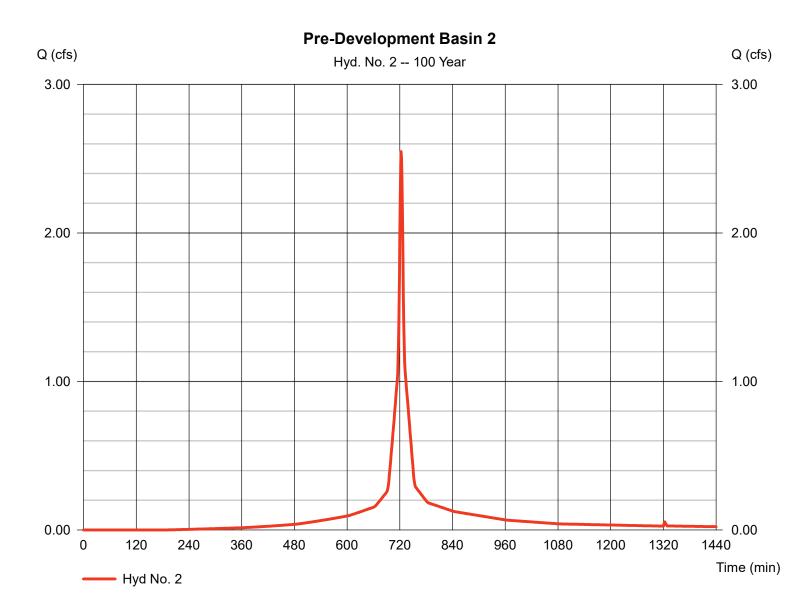
Hyd. No. 1

Pre-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.725 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 2,050 cuft
Drainage area	= 0.090 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 85) + (0.070 x 84)] / 0.090

Monday, Dec 6, 2021

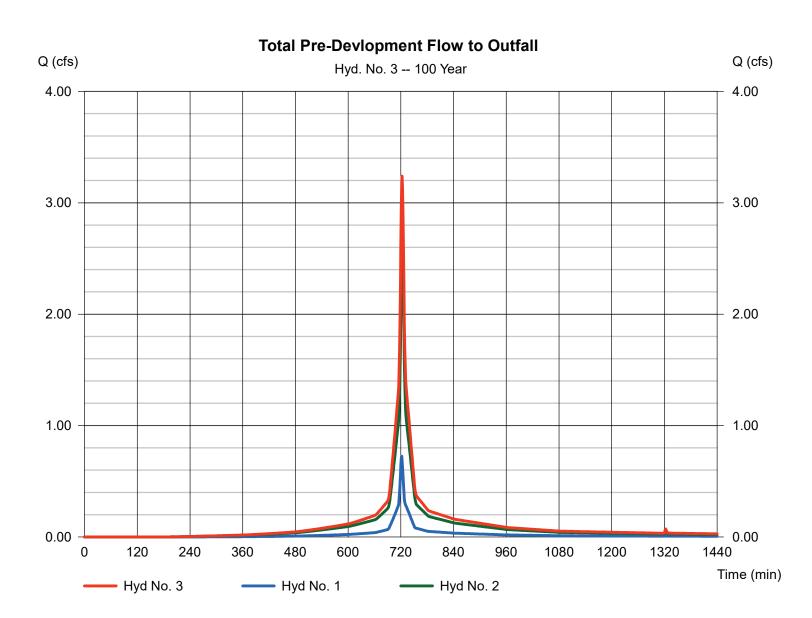

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Pre-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 2.548 cfs
Storm frequency	= 100 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 7,814 cuft
Drainage area	= 0.300 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 3.70 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.054 x 83) + (0.123 x 86) + (0.057 x 98) + (0.064 x 85)] / 0.300



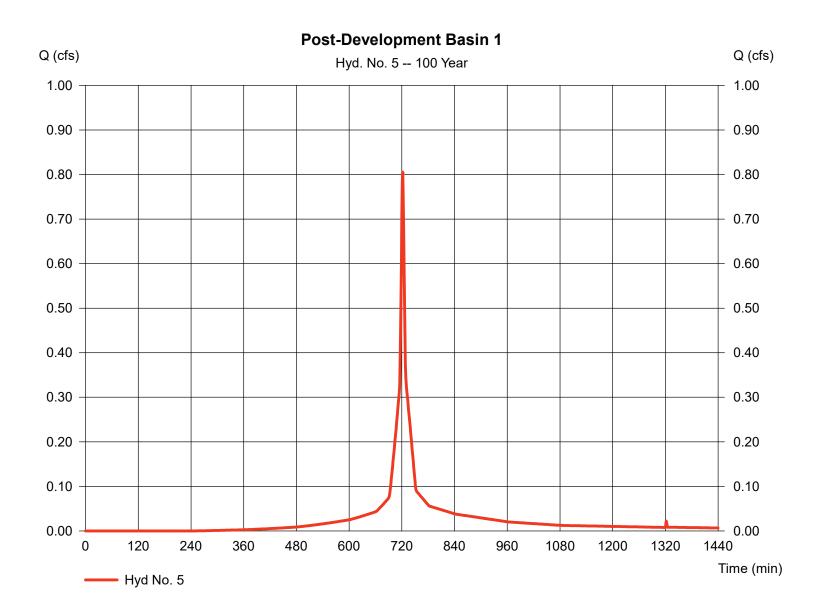
Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Total Pre-Devlopment Flow to Outfall

Hydrograph type	= Combine	Peak discharge	= 3.239 cfs
Storm frequency	= 100 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 9,863 cuft
Inflow hyds.	= 1, 2	Contrib. drain. are	a = 0.390 ac

77

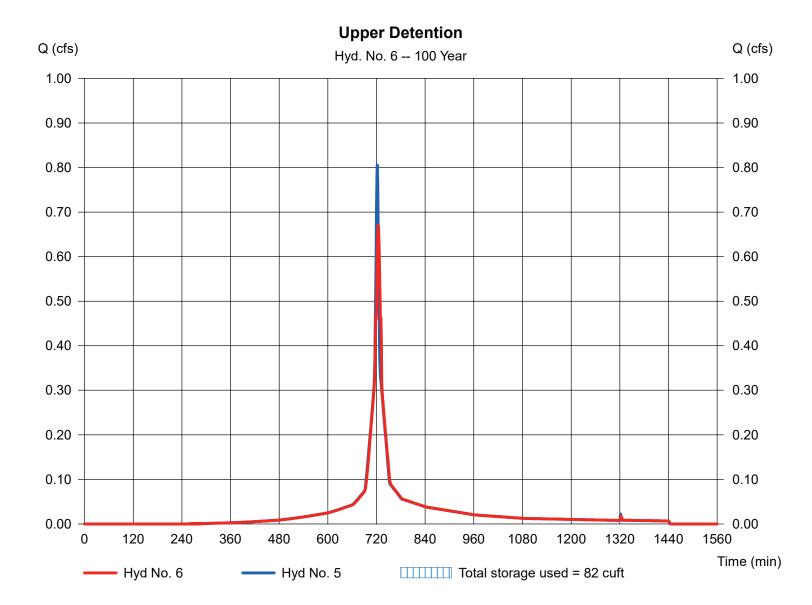

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Post-Development Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.805 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 2,277 cuft
Drainage area	= 0.100 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.020 x 83) + (0.060 x 80)] / 0.100


Hydraflow Hydrographs by Intelisolve v9.1

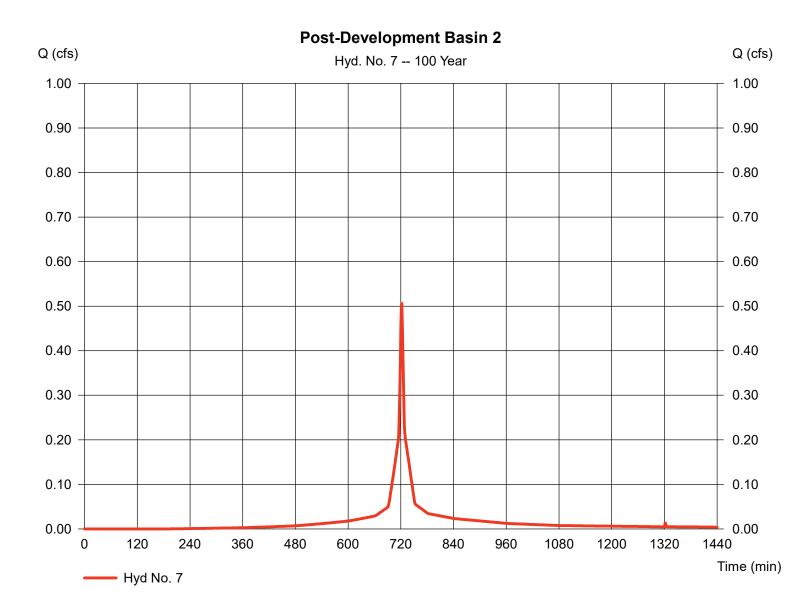
Hyd. No. 6

Upper Detention

Hydrograph type	= Reservoir	Peak discharge	= 0.671 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 2,277 cuft
Inflow hyd. No.	= 5 - Post-Development Basin 1	Max. Elevation	= 86.66 ft
Reservoir name	= 401 Upper Detention	Max. Storage	= 82 cuft

Storage Indication method used.

Monday, Dec 6, 2021


Hydraflow Hydrographs by Intelisolve v9.1

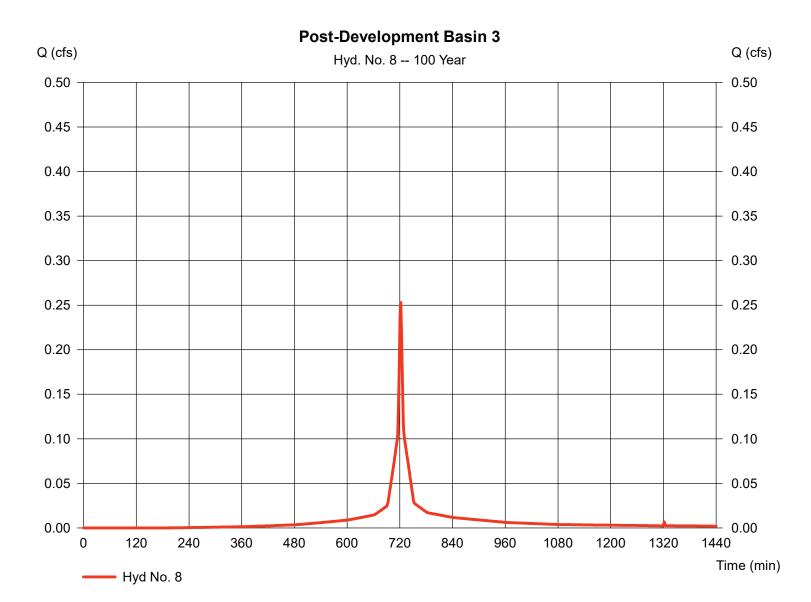
Hyd. No. 7

Post-Development Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.506 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,465 cuft
Drainage area	= 0.060 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.11 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.037 x 83) + (0.020 x 98)] / 0.060

Monday, Dec 6, 2021

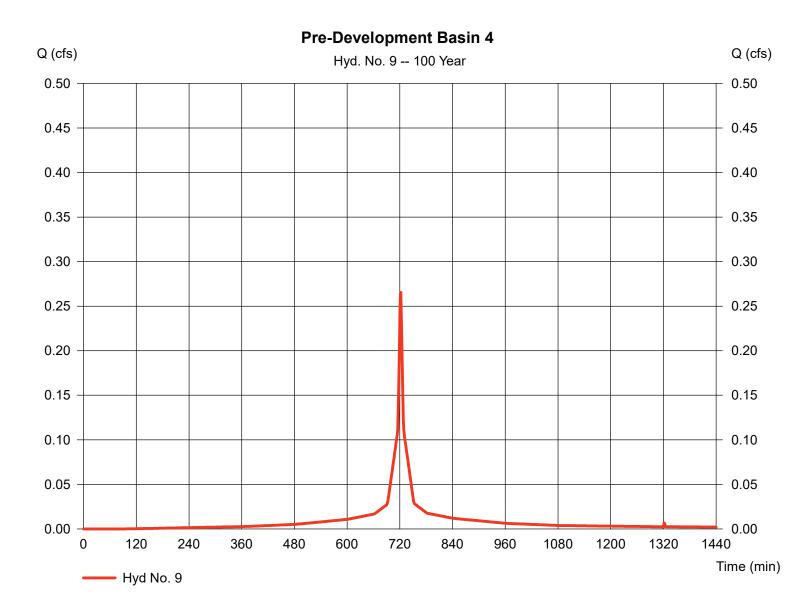

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post-Development Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.253 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 733 cuft
Drainage area	= 0.030 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.007 x 98) + (0.023 x 85)] / 0.030

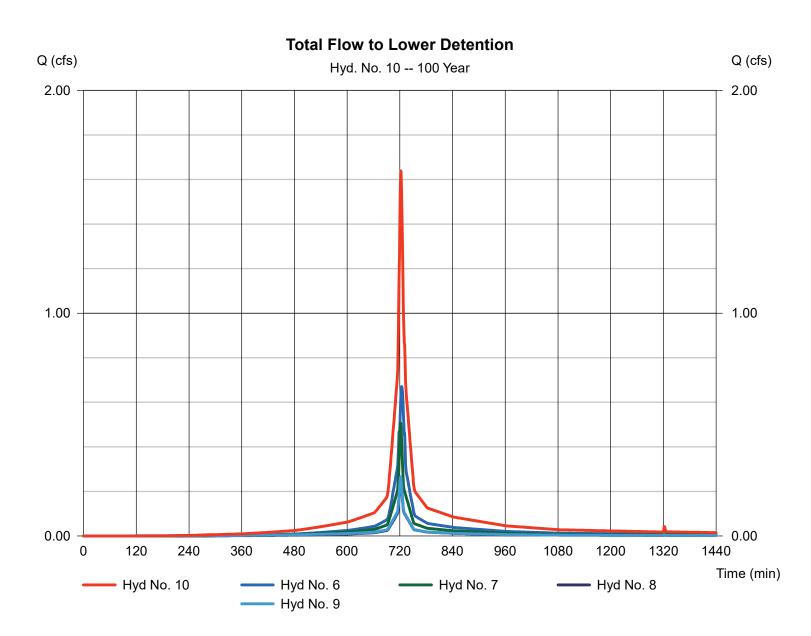

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Pre-Development Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 0.266 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 806 cuft
Drainage area	= 0.030 ac	Curve number	= 94*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.00 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.010 x 85)] / 0.030

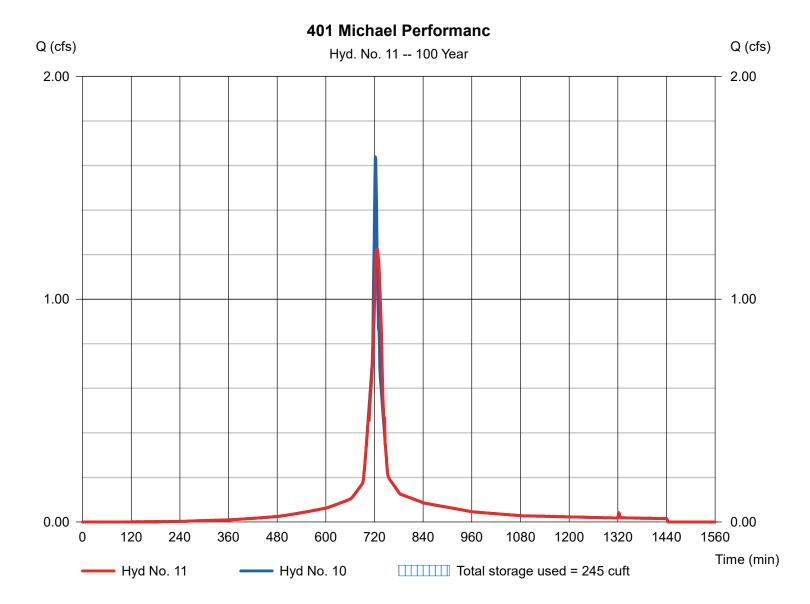

Monday, Dec 6, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Total Flow to Lower Detention

Hydrograph type	= Combine	Peak discharge	= 1.639 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 5,281 cuft
Inflow hyds.	= 6, 7, 8, 9	Contrib. drain. area	a = 0.120 ac

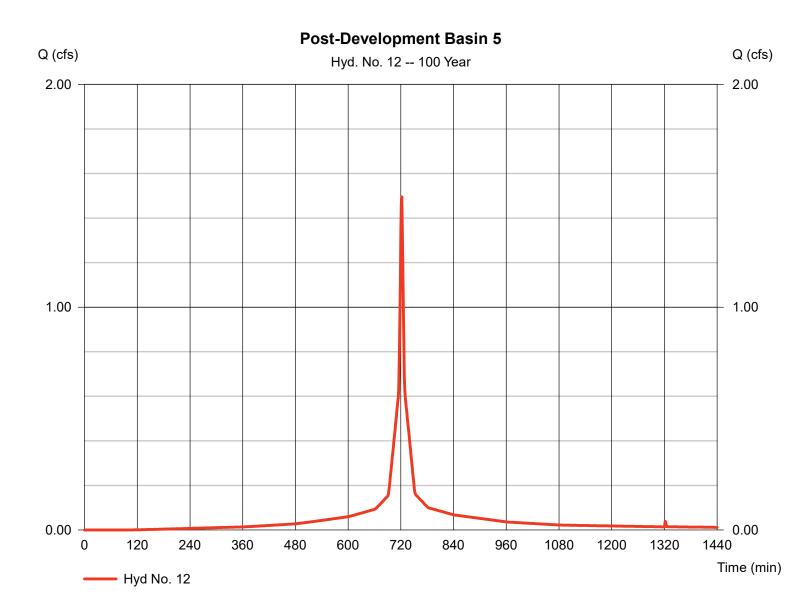

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

401 Michael Performanc

Hydrograph type	= Reservoir	Peak discharge	= 1.225 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 1 min	Hyd. volume	= 5,281 cuft
Inflow hyd. No.	= 10 - Total Flow to Lower Detention	Max. Elevation	= 77.20 ft
Reservoir name	= 401 Michael Detention	Max. Storage	= 245 cuft

Storage Indication method used.

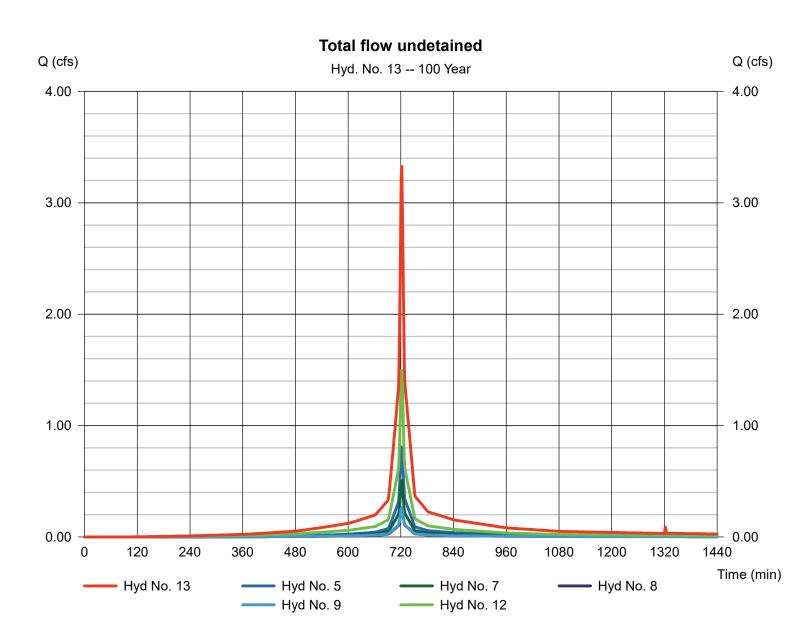

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Post-Development Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 1.496 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 4,500 cuft
Drainage area	= 0.170 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 2.90 min
Total precip.	= 8.62 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 98) + (0.020 x 85) + (0.050 x 86)] / 0.170

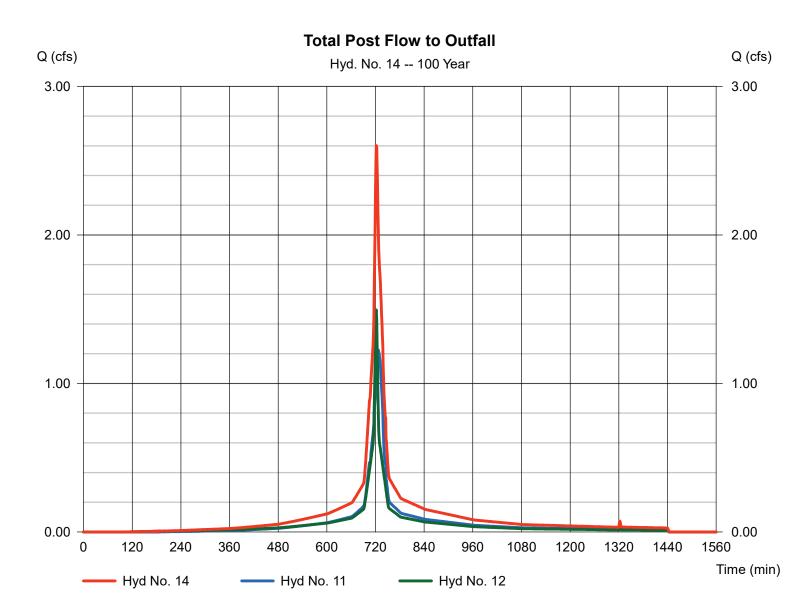


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Total flow undetained

Hydrograph type	= Combine	Peak discharge	= 3.326 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 9,781 cuft
Inflow hyds.	= 5, 7, 8, 9, 12	Contrib. drain. area = 0.390 ac	


86

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 14

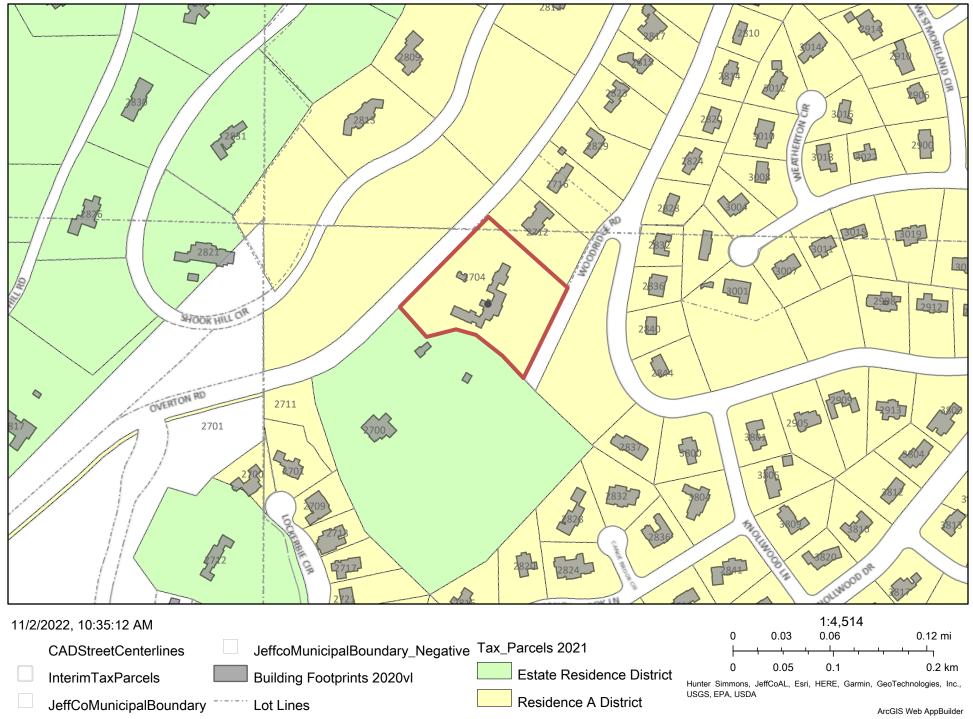
Total Post Flow to Outfall

= Combine	Peak discharge	= 2.602 cfs
= 100 yrs	Time to peak	= 722 min
= 1 min	Hyd. volume	= 9,781 cuft
= 11, 12	Contrib. drain. area = 0.170 ac	
	= 100 yrs = 1 min	= 100 yrsTime to peak= 1 minHyd. volume

87

Variance Application - Part I

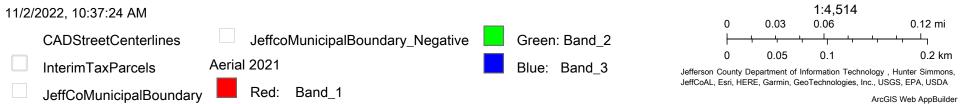
Project Data


Address of Subject Property 2704 Woode	4000 POAD, MOUNTAIN BROOK, AL 35223
Zoning Classification \$55105145 A DISTE	10T
Name of Property Owner(s) WILLIAM AND	JUDY NELSON
Phone Number	Email brekon Quelbro.com
Name of Surveyor WIWIAM CAWAHAM	J
Phone Number <u>205.229.1993</u>	Email buck @ south central surveying.com
Name of Architect (if applicable) 🕁 🖓	LOPBSPEAUW
Phone Number 205. 934. 4711	Email dorberbaum @ lorberbaumungir.com

Property owner or representative agent must be present at hearing

Please **fill in only applicable** project information (relating directly to the variance request(s):

	Zoning Code Requirement	Existing Development	Proposed Development
Lot Area (sf)		200000000	
Lot Width (ft)			
Front Setback (ft) primary			
Front Setback (ft) secondary			
Right Side Setback			
Left Side Setback			
Right Side Setback (ft):			
For non-conforming narrow			
lots in Res-B or Res-C:			
Less than 22' high \rightarrow			
22' high or greater \rightarrow			
Left Side Setback (ft):			
For non-conforming narrow			
lots in Res-B or Res-C:			
Less than 22' high \rightarrow			
22' high or greater \rightarrow			
Rear Setback (ft)			
Lot Coverage (%)			
Building Height (ft)			
Other			SPA AND PAVILION IN FRONT YARD
Other			IN FRONT YALD


A-22-30 Zoning

JeffCoAL, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, EPA, USDA | Jefferson County Information Technology Services | Hunter Simmons | Jefferson County Department of Information Technology |

A-22-30 Aerial

JeffCoAL, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, EPA, USDA | Jefferson County Information Technology Services | Hunter Simmons | Jefferson County Department of Information Technology |

Report to the Board of Zoning Adjustment

A-22-19

Petition Summary

Request to allow a detached accessory structure in the secondary front yard (Overton Road) in lieu of the requirement that accessory structures be located only in a side yard or rear yard.

Scope of Work

The scope of work entails a proposed a new pavilion in the secondary front yard.

Variance Request for Secondary Front (Overton Road) Yard

Nexus: The hardship in this case is the double frontage lot configuration which is reasonably related to the request.

Possible Findings for Approval: The double frontage lot has the primary front on Woodridge Road, with Overton Road being the rear of the home. The site has an existing pool and spa to the rear of the home (within in the secondary front yard area along Overton Road) in the same location as the proposed pavilion. The topography is such that the area in question sits approximately 60 feet above the Overton Road which would shield the view of the proposed pavilion from the secondary front entirely.

It is anticipated that an approval of such variance:

- a. is minor in nature (in that the proposed structure is small).
- b. Is in keeping with the spirit and intent of the zoning ordinance (in that the

proposed structure will not be visible from the secondary road frontage).

Impervious Area

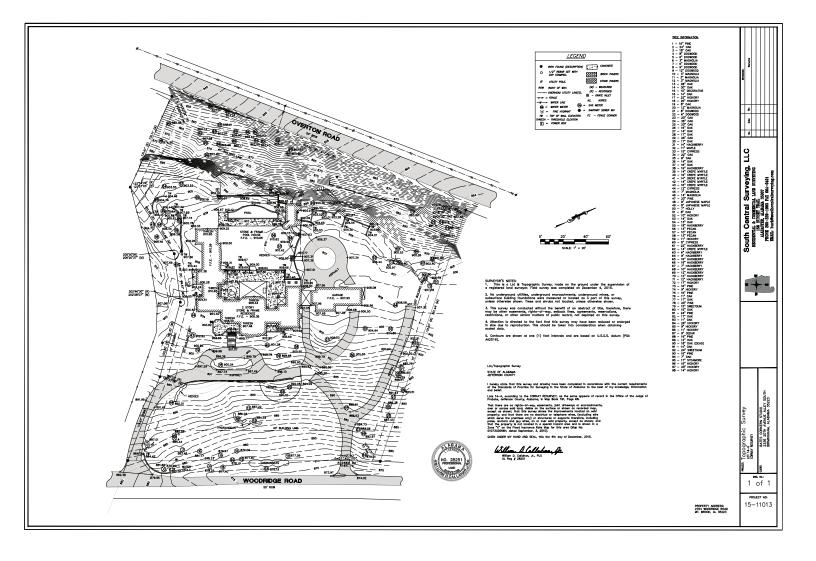
The proposal is in compliance with the allowable impervious surface area.

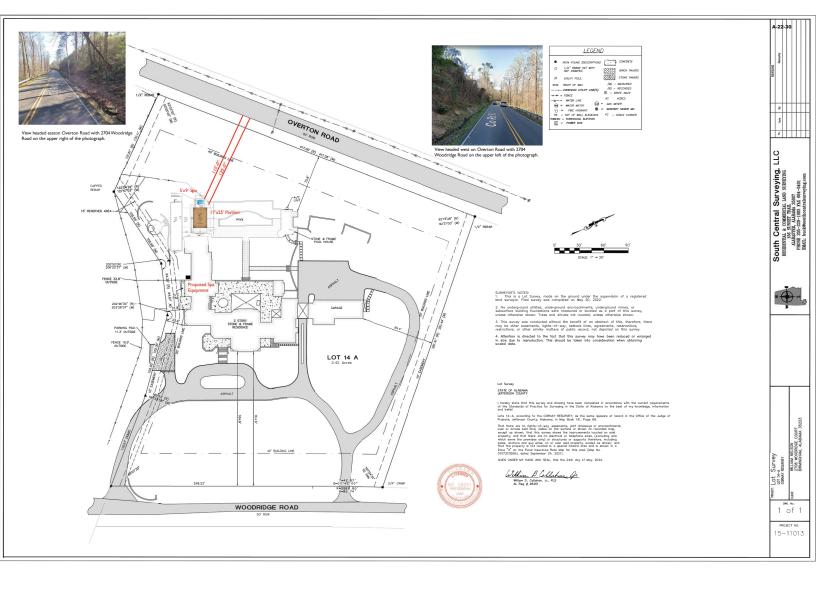
Subject Property and Surrounding Land Uses

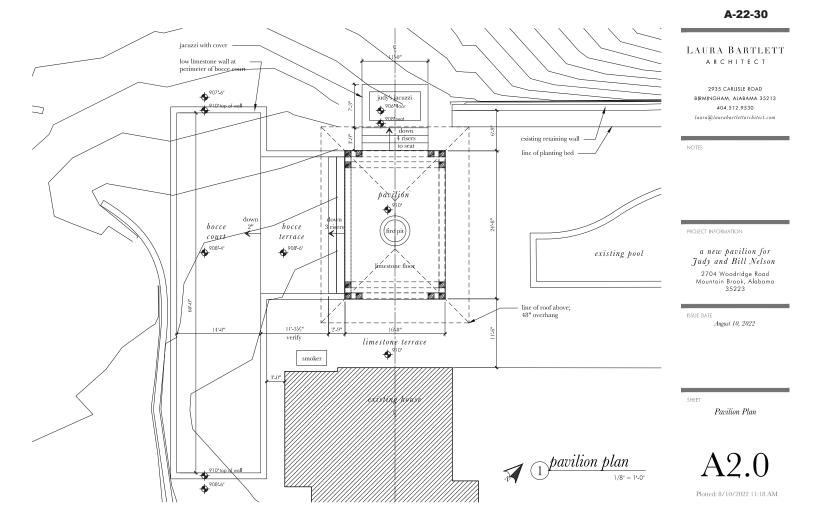
The property contains a single-family dwelling, and is surrounded by same.

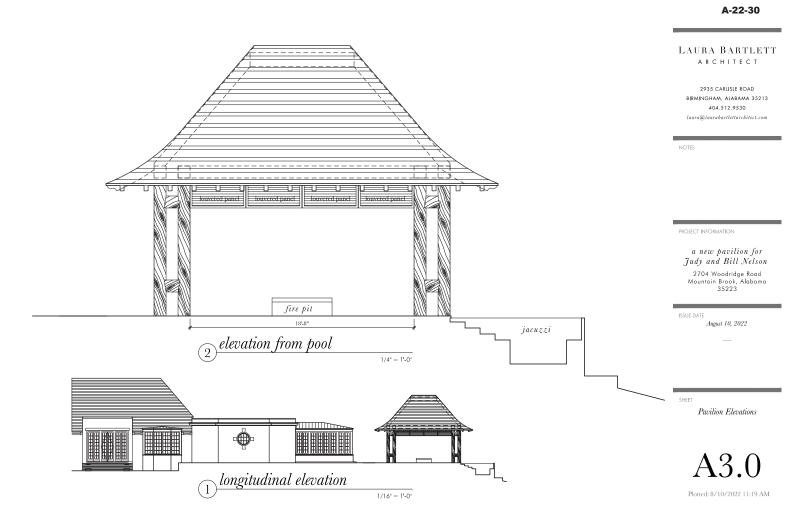
Affected Regulation

Article XIX, General Area and Dimensional Requirements; Section 129-318, Private Recreational Facilities in Residential Districts.

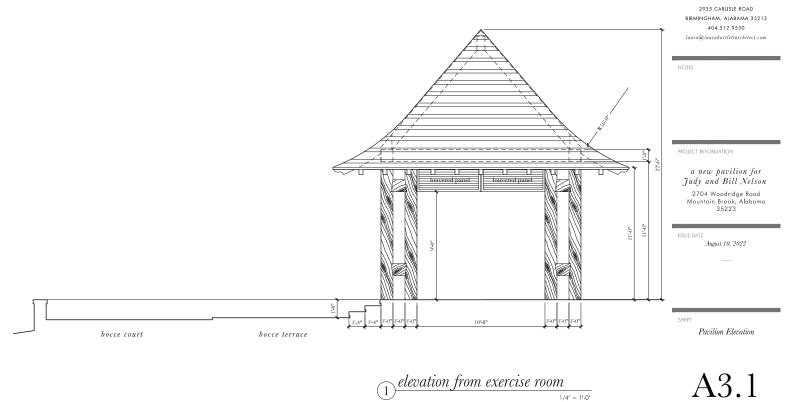

Appends


LOCATION: 2704 Woodridge Road


ZONING DISTRICT: Residence A District


OWNERS: William and Judy Nelson

. .



A-22-30

LAURA BARTLETT ARCHITECT

Plotted: 8/10/2022 11:22 AM

Variance Application Part II

Required Findings (Sec. 129-455 of the Zoning Ordinance)

To aid staff in determining that the required hardship findings can be made in this particular case, please answer the following questions with regard to your request. These findings must be made by the Board of Zoning Adjustment in order for a variance to be granted (please attach a separate sheet if necessary).

What special circumstances or conditions, applying to the building or land in question, are peculiar to such building or land, and do not apply generally to other buildings or land in the vicinity (including size, shape, topography, location or surroundings)?

THE OWNERS WOULD WERE TO ADD A SPA, PAVILIAN AND BOWE WURT ADDACENT TO THEIR EXSAND, POUL AND PATTO. THEIR LOF TOUCHES TWO POADS MAKING THEIR "BACKTARD" ALGO A FRONT YARD. HOWEVER, FUR THIS FRONTAGE, THEY ARE 60' ABOVE OVERTON ROAD WITH AN EXISTING CUFF AND VEYSTATIVE SUPERN. FROM THE ROAD, IT IS VERY DIFFICULT TO SEE THE PROPOSED IMPROVEMENTS.

Was the condition from which relief is sought a result of action by the applicant? (i.e., *self-imposed hardship* such as: "...converted existing garage to living space and am now seeking a variance to construct a new garage in a required setback...")

NO. THE EXISTING GRADE OF THE PROPOSED EVENUENTS ARE STILL SCREENED FROM THE PUAD BY THE TOJOGRAPHY AND VEGETATION.

How would the granting of this variance be consistent with the purpose and intent of the Zoning Regulations?

<u>THE TOPOGRAPHY CREATES A CONDITION THAT THE SELENDARY FRONT DOES NOT FEEL LIKE A FRONT</u> YARD BUT THE OPDINANUS IS WRITTEN IN SUM A WAY THAT THIS CLEAFES A SITUATION WHERE A VALIANCE IS BEING ASKED FOR.